The GILTT solution of the advection-diffusion equation for an inhomogeneous and nonstationary PBL

被引:26
|
作者
Moreira, D. M. [1 ]
Vilhena, M. T.
Buske, D.
Tirabassi, T.
机构
[1] Univ Fed Rio Grande do Sul, PROMEC, Porto Alegre, RS, Brazil
[2] CNR, Inst ISAC, I-00185 Rome, Italy
关键词
GILTT; Laplace transform; atmospheric dispersion; analytical solution; time-dependent advection-diffusion equation; planetary boundary layer; air pollution modeling;
D O I
10.1016/j.atmosenv.2006.01.035
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this work, we present an analytical solution for the nonstationary two-dimensional advection-diffusion equation to simulate the pollutant dispersion in the planetary boundary layer. In this method the advection-diffusion equation is solved by the application of the Laplace transform technique and the solution of the resulting stationary problem by the generalised integral Laplace transform technique (GILTT). We also report numerical simulations and statistical comparison with experimental data available in the literature. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3186 / 3194
页数:9
相关论文
共 50 条
  • [21] An implicit numerical method for the solution of the fractional advection-diffusion equation with delay
    Pimenov, V. G.
    Hendy, A. S.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2016, 22 (02): : 218 - 226
  • [22] DOMAIN DECOMPOSITION METHOD FOR THE ADVECTION-DIFFUSION EQUATION
    CHARTON, P
    NATAF, F
    ROGIER, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 313 (09): : 623 - 626
  • [23] A NOTE ON FINITE DIFFERENCING OF THE ADVECTION-DIFFUSION EQUATION
    CLANCY, RM
    MONTHLY WEATHER REVIEW, 1981, 109 (08) : 1807 - 1809
  • [24] A Meshfree Method for the Fractional Advection-Diffusion Equation
    Lian, Yanping
    Wagner, Gregory J.
    Liu, Wing Kam
    MESHFREE METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS VIII, 2017, 115 : 53 - 66
  • [25] A bound on mixing efficiency for the advection-diffusion equation
    Thiffeault, JL
    Doering, CR
    Gibbon, JD
    JOURNAL OF FLUID MECHANICS, 2004, 521 : 105 - 114
  • [26] THE DIRICHLET PROBLEM OF A CONFORMABLE ADVECTION-DIFFUSION EQUATION
    Avci, Derya aeae
    Eroglu, Beyza Billur Iskender
    Ozdemir, Necati
    THERMAL SCIENCE, 2017, 21 (01): : 9 - 18
  • [27] GENERALIZED SCHUR METHODS FOR THE ADVECTION-DIFFUSION EQUATION
    NATAF, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (05): : 419 - 422
  • [28] DOMAIN DECOMPOSITION METHOD FOR THE ADVECTION-DIFFUSION EQUATION
    CHARTON, P
    NATAF, F
    ROGIER, F
    RECHERCHE AEROSPATIALE, 1992, (04): : 73 - 78
  • [29] Climate modeling with neural advection-diffusion equation
    Choi, Hwangyong
    Choi, Jeongwhan
    Hwang, Jeehyun
    Lee, Kookjin
    Lee, Dongeun
    Park, Noseong
    KNOWLEDGE AND INFORMATION SYSTEMS, 2023, 65 (06) : 2403 - 2427
  • [30] Multiscale computation method for an advection-diffusion equation
    Su, Fang
    Xu, Zhan
    Cui, Jun-Zhi
    Du, Xin-Peng
    Jiang, Hao
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (14) : 7369 - 7374