Ecological Performance of an Irreversible Proton Exchange Membrane Fuel Cell

被引:4
|
作者
Li, Changjie [1 ]
Xu, Bing [1 ]
Ma, Zheshu [1 ]
机构
[1] Nanjing Forestry Univ, Coll Automobile & Traff Engn, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
PEMFC; Finite Time Thermodynamics; Ecological Performance; Numerical Simulation; BRAYTON HEAT ENGINE; MATHEMATICAL-MODEL; ECOP OPTIMIZATION; COEFFICIENT; SYSTEM; PEMFC;
D O I
10.1166/sam.2020.3846
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper a novel PEMFC voltage model considering the leakage current is established. Numerical simulation results based on the newly established PEMFC model is compared with the experimental results and indicates that they have a good match with the experimental results. Based on the proposed voltage model and previous studies, the PEMFC ecological criterion was proposed and derived. As well, other finite time thermodynamics objective functions including entropy yield, ecological objective function and ecological performance coefficient formula are derived for PEMFCs. Detailed numerical simulations are performed considering different design parameters and operating parameters. Ecological performance of an irreversible PEMFC is gained and such results can be further used for ecological optimization to yield maximum performance of the PEMFC.
引用
收藏
页码:1225 / 1235
页数:11
相关论文
共 50 条
  • [21] Performance Degradation and Life Prediction of Proton Exchange Membrane Fuel Cell
    Jia, Xueli
    Liu, Xiaohui
    Zhou, Yilin
    2022 PROGNOSTICS AND HEALTH MANAGEMENT CONFERENCE, PHM-LONDON 2022, 2022, : 433 - 437
  • [22] Mathematical analysis of the steady performance of a proton exchange membrane fuel cell
    Department of Marine Engineering, National Taiwan Ocean University, Keelung, Taiwan
    不详
    J. Taiwan Soc. Nav. Archit. Mar. Eng., 2008, 1 (1-8):
  • [23] High performance proton exchange membrane fuel cell electrode assemblies
    Yang, Tien-Fu
    Hourng, Lih-Wu
    Yu, T. Leon
    Chi, Pei-Hung
    Su, Ay
    JOURNAL OF POWER SOURCES, 2010, 195 (21) : 7359 - 7369
  • [24] Effect of compressive force on the performance of a proton exchange membrane fuel cell
    Ous, T.
    Arcoumanis, C.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2007, 221 (09) : 1067 - 1074
  • [25] Performance analysis of proton exchange membrane fuel cell in automotive applications
    Pahon, E.
    Bouquain, D.
    Hissel, D.
    Rouet, A.
    Vacquier, C.
    JOURNAL OF POWER SOURCES, 2021, 510
  • [26] Impact of manufacturing processes on proton exchange membrane fuel cell performance
    Shahgaldi, Samaneh
    Alaefour, Ibrahim
    Li, Xianguo
    APPLIED ENERGY, 2018, 225 : 1022 - 1032
  • [27] Effect of environmental condition on the performance of proton exchange membrane fuel cell
    Wu, Maosheng
    Yu, Datai
    Li, Guo
    Zhang, Yangping
    Beijing Keji Daxue Xuebao/Journal of University of Science and Technology Beijing, 2003, 25 (06): : 584 - 586
  • [28] Impact of Ionomer Content on Proton Exchange Membrane Fuel Cell Performance
    Afsahi, F.
    Mathieu-Potvin, F.
    Kaliaguine, S.
    FUEL CELLS, 2016, 16 (01) : 107 - 125
  • [29] Performance Analysis of a Proton Exchange Membrane Fuel Cell Based Syngas
    Zhang, Xiuqin
    Lin, Qiubao
    Liu, Huiying
    Chen, Xiaowei
    Su, Sunqing
    Ni, Meng
    ENTROPY, 2019, 21 (01):
  • [30] The influence of reducing agents in the performance of the proton exchange membrane fuel cell
    Martins, L
    Nunes, MC
    Martins, JI
    Pinto, MC
    Bazzaoui, M
    ADVANCED MATERIALS FORUM II, 2004, 455-456 : 592 - 595