MAPPING LINEAR EROSION FEATURES USING HIGH AND VERY HIGH RESOLUTION SATELLITE IMAGERY

被引:49
|
作者
Desprats, J. F. [1 ]
Raclot, D. [2 ]
Rousseau, M. [1 ]
Cerdan, O. [1 ]
Garcin, M. [1 ]
Le Bissonnais, Y. [3 ]
Ben Slimane, A. [2 ,4 ]
Fouche, J. [1 ]
Monfort-Climent, D. [1 ]
机构
[1] Bur Rech Geol & Minieres BRGM, F-34000 Montpellier, France
[2] INRA IRD SupAgro, LISAH, IRD, UMR, F-34060 Montpellier, France
[3] INRA IRD SupAgro, LISAH, INRA, UMR, F-34060 Montpellier, France
[4] INAT, Tunis 1082, Tunisia
关键词
remote sensing; QuickBird; linear erosion features; very high resolution; Tunisia; REMOTE-SENSING DATA; GULLY EROSION; SOIL-EROSION; AERIAL-PHOTOGRAPHY; RUNOFF; MODEL; PLOTS; RISK;
D O I
10.1002/ldr.1094
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Mapping and monitoring linear erosion features (LEFs) over large areas is fundamental for a better understanding of the main erosion processes and for planning suitable protection measures. The advent of very high-resolution satellite imagery has expanded the range of satellite LEF identification to moderate-size elements. After determining the relationship between satellite imagery resolution and the ability to detect LEFs, we discuss a highly automated method for extracting such LEFs from a very high spatial resolution image (0.61?m resolution). The method is based on a two-stage strategy: (1) extraction of all linear features visible on the satellite image using filters and photo-interpretation; (2) filtering these linear features according to geometric criteria (e.g. orientation relative to slope, sinuosity, position in landscape, etc.) so as to retain only those relative to linear erosion. A series of three images with increasing spatial resolution (10.5 and 0.61?m) was prepared for an area on the Cap Bon peninsula (Tunisia). This predominantly agricultural area has a high density of LEFs with very varied geometric characteristics. The area's problems are both onsite for the agriculture itself, and offsite with the silting up of hillside reservoirs. Respectively 22 per cent, 37 per cent and 73 per cent of the site's LEFs, with respective average widths of 2.8, 3.0 and 2.2?m, are visible on the 10, 5 and 0.61?m resolution images. Gully identification should help to identify the most threatened areas to help land use planning and management or to validate erosion models whether at regional or local (drainage basin) scale. Copyright (c) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:22 / 32
页数:11
相关论文
共 50 条
  • [31] Mapping private gardens in urban areas using object-oriented techniques and very high-resolution satellite imagery
    Mathieu, Renaud
    Freeman, Claire
    Aryal, Jagannath
    LANDSCAPE AND URBAN PLANNING, 2007, 81 (03) : 179 - 192
  • [32] Unsupervised segmentation of high resolution satellite imagery using local spectral and texture features
    Chen, QX
    Luo, JC
    Zhou, CH
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XXVII, PTS 1AND 2, 2004, 5558 : 827 - 837
  • [33] Retrieval using texture features in high resolution multi-spectral satellite imagery
    Newsam, SD
    Kamath, C
    DATA MINING AND KNOWLEDGE DISCOVERY: THEORY, TOOLS, AND TECHNOLOGY VI, 2004, 5433 : 21 - 32
  • [34] UPDATING MAPS USING HIGH RESOLUTION SATELLITE IMAGERY
    Alrajhi, Muhamad
    Janjua, Khurram Shahzad
    Khan, Mohammad Afroz
    Alobeid, Abdalla
    XXIII ISPRS Congress, Commission IV, 2016, 41 (B4): : 711 - 719
  • [35] Object Tracking Using High Resolution Satellite Imagery
    Meng, Lingfei
    Kerekes, John P.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (01) : 146 - 152
  • [36] Automatic system for operational traffic monitoring using very-high-resolution satellite imagery
    Larsen, Siri Oyen
    Salberg, Arnt-Borre
    Eikvil, Line
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (13) : 4850 - 4870
  • [37] Human population distribution modelling at regional level using very high resolution satellite imagery
    Lung, Tobias
    Luebker, Tillmann
    Ngochoch, James K.
    Schaab, Gertrud
    APPLIED GEOGRAPHY, 2013, 41 : 36 - 45
  • [38] Using very high spatial resolution multispectral satellite sensor imagery to monitor refugee camps
    Bjorgo, E
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2000, 21 (03) : 611 - 616
  • [39] Automatic Windthrow Detection Using Very-High-Resolution Satellite Imagery and Deep Learning
    Kislov, Dmitry E.
    Korznikov, Kirill A.
    REMOTE SENSING, 2020, 12 (07)
  • [40] Potential of high-resolution satellite imagery for national mapping products
    Li, RX
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 1998, 64 (12): : 1165 - 1170