Decentralized measurement feedback stabilization of large-scale systems via control vector Lyapunov functions

被引:12
|
作者
Xu, Dabo [1 ]
Ugrinovskii, Vale [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Automat, Nanjing 210094, Jiangsu, Peoples R China
[2] Australian Def Force Acad, Sch Engn & Informat Technol, UNSW Canberra, Canberra, BC 2610, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Decentralized control; Control Lyapunov function; Vector dissipativity; NONLINEAR DYNAMICAL-SYSTEMS; TO-STATE STABILITY; DISSIPATIVITY THEORY; THEOREM;
D O I
10.1016/j.sysconle.2013.09.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the problem of decentralized measurement feedback stabilization of nonlinear interconnected systems. As a natural extension of the recent development on control vector Lyapunov functions, the notion of output control vector Lyapunov function (OCVLF) is introduced for investigating decentralized measurement feedback stabilization problems. Sufficient conditions on (local) stabilizability are discussed which are based on the proposed notion of OCVLF. It is shown that a decentralized controller for a nonlinear interconnected system can be constructed using these conditions under an additional vector dissipation-like condition. To illustrate the proposed method, two examples are given. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1187 / 1195
页数:9
相关论文
共 50 条
  • [1] ON DECENTRALIZED FEEDBACK STABILIZATION OF LARGE-SCALE INTERCONNECTED SYSTEMS
    MAHALANABIS, AK
    SINGH, R
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1980, 32 (01) : 115 - 126
  • [2] Control vector Lyapunov functions for large-scale impulsive dynamical systems
    Nersesov, Sergey G.
    Haddad, Wassim M.
    [J]. NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2007, 1 (02) : 223 - 243
  • [3] Control vector lyapunov functions for large-scale impulsive dynamical systems
    Nersesov, Sergey G.
    Haddad, Wassim M.
    [J]. PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 4815 - +
  • [4] STABILITY OF LARGE-SCALE SYSTEMS - VECTOR LYAPUNOV FUNCTIONS
    GRUJIC, LT
    GENTINA, JC
    BORNE, P
    BURGAT, C
    BERNUSSOU, J
    [J]. RAIRO-AUTOMATIQUE-SYSTEMS ANALYSIS AND CONTROL, 1978, 12 (04): : 319 - 348
  • [5] ON DECENTRALIZED FEEDBACK STABILIZATION OF LARGE-SCALE INTERCONNECTED SYSTEMS - COMMENT
    SUH, IH
    MOON, YS
    BIEN, ZN
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1981, 34 (05) : 1045 - 1047
  • [6] Decentralized stabilization of large-scale systems via state-feedback and using descriptor systems
    Labibi, B
    Lohmann, B
    Sedigh, AK
    Maralani, PJ
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2003, 33 (06): : 771 - 776
  • [7] Robust stabilization of large-scale systems with nonlinear uncertainties via decentralized state feedback
    Yan, JJ
    Tsai, JSH
    Kung, FC
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1998, 335B (05): : 951 - 961
  • [8] STABILIZATION BY DECENTRALIZED CONTROL FOR LARGE-SCALE INTERCONNECTED SYSTEMS
    SHI, ZC
    GAO, WB
    [J]. LARGE SCALE SYSTEMS IN INFORMATION AND DECISION TECHNOLOGIES, 1986, 10 (02): : 147 - 155
  • [9] Control of large-scale systems: Beyond decentralized feedback
    Siljak, DD
    Zecevic, AI
    [J]. ANNUAL REVIEWS IN CONTROL, 2005, 29 (02) : 169 - 179
  • [10] Decentralized Stabilization of Markovian Jump Large-scale Systems via Neighboring Mode Dependent Output Feedback Control
    Ma, Shan
    Xiong, Junlin
    [J]. 2012 12TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS & VISION (ICARCV), 2012, : 1523 - 1527