Microscopic inspection and tracking of single upconversion nanoparticles in living cells

被引:153
|
作者
Wang, Fan [1 ]
Wen, Shihui [1 ]
He, Hao [1 ]
Wang, Baoming [1 ]
Zhou, Zhiguang [1 ]
Shimoni, Olga [1 ]
Jin, Dayong [1 ]
机构
[1] Univ Technol Sydney, IBMD, Fac Sci, Sydney, NSW 2007, Australia
来源
LIGHT-SCIENCE & APPLICATIONS | 2018年 / 7卷
基金
澳大利亚研究理事会; 英国医学研究理事会;
关键词
DOPED UPCONVERTING NANOPARTICLES; MODEL; TRANSPORT; CONTRAST;
D O I
10.1038/lsa.2018.7
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Nanoparticles have become new tools for cell biology imaging(1), sub-cellular sensing(2), super-resolution imaging(3,4) and drug delivery(5). Long-term 3D tracking of nanoparticles and their intracellular motions have advanced the understanding of endocytosis and exocytosis as well as of active transport processes(6-8). The sophisticated operation of correlative optical-electron microscopy(9,10) and scientific-grade cameras is often used to study intercellular processes. Nonetheless, most of these studies are still limited by the insufficient sensitivity for separating a single nanoparticle from a cluster of nanoparticles or their aggregates(8,11,12). Here we report that our eyes can track a single fluorescent nanoparticle that emits over 4000 photons per 100 milliseconds under a simple microscope setup. By tracking a single nanoparticle with high temporal, spectral and spatial resolution, we show the measurement of the local viscosity of the intracellular environment. Moreover, beyond the colour domain and 3D position, we introduce excitation power density as the fifth dimension for our eyes to simultaneously discriminate multiple sets of single nanoparticles.
引用
收藏
页码:18007 / 18007
页数:6
相关论文
共 50 条
  • [41] Phototoxicity and luminescence of the upconversion nanoparticles embedded in the cells
    Yanina, I. Yu
    Sagaidachnaya, E. A.
    Vidyasheva, I. V.
    Navolokin, N. A.
    Kochubey, V., I
    Tuchin, V. V.
    DYNAMICS AND FLUCTUATIONS IN BIOMEDICAL PHOTONICS XVI, 2019, 10877
  • [42] Microscopic mechanics of biomolecules in living cells
    Cleri, Fabrizio
    SCIENTIFIC MODELING AND SIMULATIONS, 2008, 15 (1-3): : 339 - 362
  • [43] Quantitative Imaging of Single Upconversion Nanoparticles in Biological Tissue
    Nadort, Annemarie
    Sreenivasan, Varun K. A.
    Song, Zhen
    Grebenik, Ekaterina A.
    Nechaev, Andrei V.
    Semchishen, Vladimir A.
    Panchenko, Vladislav Y.
    Zvyagin, Andrei V.
    PLOS ONE, 2013, 8 (05):
  • [44] Single-Molecule Tracking Approaches to Protein Synthesis Kinetics in Living Cells
    Volkov, Ivan L.
    Johansson, Magnus
    BIOCHEMISTRY, 2019, 58 (01) : 7 - 14
  • [45] An automated tool for 3d tracking of single molecules in living cells
    Gardini, L.
    Capitanio, M.
    Pavone, F. S.
    ADVANCED MICROSCOPY TECHNIQUES IV; AND NEUROPHOTONICS II, 2015, 9536
  • [46] An automated tool for 3d tracking of single molecules in living cells
    Gardini, L.
    Capitanio, M.
    Pavone, F. S.
    SINGLE MOLECULE SPECTROSCOPY AND SUPERRESOLUTION IMAGING VIII, 2015, 9331
  • [47] Microtubule Organization in Living Cells Studied with a New Single Filament Tracking Routine
    Pallavicini, Carla
    Levi, Valeria
    Wetzler, Diana E.
    Angiolini, Juan F.
    Bensenor, Lorena
    Desposito, Marcelo A.
    Bruno, Luciana
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 166A - 166A
  • [48] Monofunctional Stealth Nanoparticle for Unbiased Single Molecule Tracking Inside Living Cells
    Lisse, Domenik
    Richter, Christian P.
    Drees, Christoph
    Birkholz, Oliver
    You, Changjiang
    Rampazzo, Enrico
    Piehler, Jacob
    NANO LETTERS, 2014, 14 (04) : 2189 - 2195
  • [49] Light Sheet Microscopy for Tracking Single Molecules on the Apical Surface of Living Cells
    Li, Yu
    Hu, Ying
    Cang, Hu
    JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (49): : 15503 - 15511
  • [50] Tracking individual proteins in living cells using single quantum dot imaging
    Courty, Sebastien
    Bouzigues, Cedric
    Luccardini, Camilla
    Ehrensperger, Marie-Virginie
    Bonneau, Stephane
    Dahan, Maxime
    MEASURING BIOLOGICAL RESPONSES WITH AUTOMATED MICROSCOPY, 2006, 414 : 211 - 228