From a one-dimensional crystal to a one-dimensional liquid: A comprehensive dynamical study of C60 peapods

被引:4
|
作者
Bousige, Colin [1 ,2 ]
Rols, Stephane [1 ]
Ollivier, Jacques [1 ]
Schober, Helmut [1 ]
Fouquet, Peter
Simeoni, Giovanna G. [3 ]
Agafonov, Viatcheslav
Davydov, Valery [4 ]
Niimi, Yoshiko [5 ]
Suenaga, Kazutomo [5 ]
Kataura, Hiromichi [6 ]
Launois, Pascale [2 ]
机构
[1] Inst Laue Langevin, F-38042 Grenoble 9, France
[2] Univ Paris 11, Phys Solides Lab, UMR CNRS 8502, F-91405 Orsay, France
[3] Tech Univ Munich, Forsch Neutronenquelle Heinz Maier Leibnitz, D-85747 Garching, Germany
[4] RAS, Inst High Pressure Phys, R-142092 Troitsk, Moscow Region, Russia
[5] Natl Inst Adv Ind Sci & Technol, Nanotube Res Ctr, Tsukuba, Ibaraki 3058565, Japan
[6] Natl Inst Adv Ind Sci & Technol, Nanosyst Res Inst, Tsukuba, Ibaraki 3058562, Japan
关键词
FULLERENE; FLUCTUATIONS; DIFFRACTION; TRANSITION; MOLECULES;
D O I
10.1103/PhysRevB.87.195438
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report an inelastic neutron-scattering investigation of the longitudinal acoustic modes of C-60 chains confined inside single walled carbon nanotubes. We take advantage of the orientations of the chains within the plane of the pellet sample to isolate their scattering signatures in the (Q,omega) space, which we follow as a function of temperature from 260 K up to 1100 K. The results show the progressive evolution of the confined chain from a one-dimensional (1D) crystal to a linear liquid, the transition occurring within a temperature range of similar to 150 K centered around 600 K. The comparison of the data obtained on monomer and polymer peapods allows extracting the speed of sound in the monomer crystalline chains (v(mono) = 3.5 km s(-1), v(poly)/v(mono) = 1.7). We find that the sound velocity is further reduced by half in the liquid state which reveals that the melting is not only due to harmonic additive thermal fluctuations, but that anharmonic terms in the intermolecular potential play an important role at high temperatures.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Phonons in a one-dimensional microfluidic crystal
    Beatus, Tsevi
    Tlusty, Tsvi
    Bar-Ziv, Roy
    [J]. NATURE PHYSICS, 2006, 2 (11) : 743 - 748
  • [32] Energy oscillations in a one-dimensional crystal
    A. M. Krivtsov
    [J]. Doklady Physics, 2014, 59 : 427 - 430
  • [33] Solitons in a one-dimensional Wigner crystal
    Pustilnik, M.
    Matveev, K. A.
    [J]. PHYSICAL REVIEW B, 2015, 91 (16)
  • [34] SURFACE STATES IN A ONE-DIMENSIONAL CRYSTAL
    GARCIA, N
    SOLANA, J
    [J]. SURFACE SCIENCE, 1973, 36 (01) : 262 - 268
  • [35] CORRELATED WANDERING IN A ONE-DIMENSIONAL CRYSTAL
    DOLGOV, AS
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1975, (10): : 43 - 47
  • [36] Lasing in a One-Dimensional Plasmonic Crystal
    Lakhani, Amit M.
    Kim, Myung-Ki
    Lau, Erwin K.
    Wu, Ming C.
    [J]. 22ND IEEE INTERNATIONAL SEMICONDUCTOR LASER CONFERENCE, 2010, : 199 - 200
  • [37] One-dimensional controllable photonic crystal
    Dzedolik, Igor V.
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2007, 24 (10) : 2741 - 2745
  • [38] One-dimensional photonic crystal design
    van der Mee, Cornelis
    Contu, Pietro
    Pintus, Paolo
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2010, 111 (01): : 214 - 225
  • [39] COOLING CURVE IN A ONE-DIMENSIONAL CRYSTAL
    MORK, KJ
    [J]. PHYSICAL REVIEW B, 1970, 1 (12): : 4847 - &
  • [40] Poincare crystal on the one-dimensional lattice
    Wang, Pei
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (11)