The energy of q-Kneser graphs and attenuated q-Kneser graphs

被引:5
|
作者
Lv, Benjian
Wang, Kaishun [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
关键词
Kneser graph; q-Kneser graph; Attenuated q-Kneser graph; Energy; Hyperenergetic; BILINEAR-FORMS;
D O I
10.1016/j.dam.2013.03.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The energy of a graph is the sum of absolute values of its eigenvalues. In this paper, we obtain a simple expression for the energy of q-Kneser graphs. Moreover, we compute the energy of attenuated q-Kneser graphs, which are a family of subgraphs of q-Kneser graphs. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2079 / 2083
页数:5
相关论文
共 50 条
  • [31] Random Kneser graphs and hypergraphs
    Kupavskii, Andrey
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (04):
  • [32] Choice number of Kneser graphs
    Bulankina, Vera
    Kupavskii, Andrey
    DISCRETE MATHEMATICS, 2022, 345 (11)
  • [33] Bipartite Kneser Graphs are Hamiltonian
    Torsten Mütze
    Pascal Su
    Combinatorica, 2017, 37 : 1207 - 1219
  • [34] Kneser Graphs and their Complements are Hyperenergetic
    Akbari, S.
    Moazami, F.
    Zare, S.
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2009, 61 (02) : 361 - 368
  • [35] Local coloring of Kneser graphs
    Omoomi, Behnaz
    Pourmiri, Ali
    DISCRETE MATHEMATICS, 2008, 308 (24) : 5922 - 5927
  • [36] On the treewidth of generalized Kneser graphs
    Metsch, Klaus
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2023, 86 : 477 - 486
  • [37] Sparse Kneser graphs are Hamiltonian
    Mutze, Torsten
    Nummenpalo, Jerri
    Walczak, Bartosz
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 103 (04): : 1253 - 1275
  • [38] Geodetic convexity and kneser graphs
    Bedo, Marcos
    Leite, Joao V. S.
    Oliveira, Rodolfo A.
    Protti, Fabio
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 449
  • [39] On the diameter of generalized Kneser graphs
    Chen, Yongzhu
    Wang, Yingqian
    DISCRETE MATHEMATICS, 2008, 308 (18) : 4276 - 4279
  • [40] Treewidth of the generalized Kneser graphs
    Liu, Ke
    Cao, Mengyu
    Lu, Mei
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (01):