Quasi-interpolation in Riemannian manifolds

被引:18
|
作者
Grohs, Philipp [1 ]
机构
[1] ETH, Seminar Appl Math, CH-8004 Zurich, Switzerland
基金
欧洲研究理事会;
关键词
Quasiinterpolation; Riemannian Data; Geodesic Finite Elements; Approximation Order; Riemannian Center of Mass; SUBDIVISION; SMOOTHNESS;
D O I
10.1093/imanum/drs026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider quasi-interpolation operators for functions assuming their values in a Riemannian manifold. We construct such operators from corresponding linear quasi-interpolation operators by replacing affine averages with the Riemannian centre of mass. As a main result, we show that the approximation rate of such a nonlinear operator is the same as for the linear operator it has been derived from. In order to formulate this result in an intrinsic way, we use the Sasaki metric to compare the derivatives of the function to be approximated with the derivatives of the nonlinear approximant. Numerical experiments confirm our theoretical findings.
引用
收藏
页码:849 / 874
页数:26
相关论文
共 50 条
  • [31] Multi-level hermite variational interpolation and quasi-interpolation
    Shengjun Liu
    Guido Brunnett
    Jun Wang
    The Visual Computer, 2013, 29 : 627 - 637
  • [32] Quasi-Interpolation on Chebyshev Grids with Boundary Corrections
    Alsharif, Faisal
    COMPUTATION, 2024, 12 (05)
  • [33] FINITE ELEMENT QUASI-INTERPOLATION AND BEST APPROXIMATION
    Ern, Alexandre
    Guermond, Jean-Luc
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (04): : 1367 - 1385
  • [34] Shape preserving fractal multiquadric quasi-interpolation
    Kumar, D.
    Chand, A. K. B.
    Massopust, P. R.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (05):
  • [35] Bivariate Quasi-Interpolation Operator of Bernoulli Type
    Catinas, Teodora
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (04) : 1171 - 1183
  • [36] Quasi-interpolation projectors for subdivision function spaces
    Xu, Hailun
    Wen, Zepeng
    Kang, Hongmei
    Graphical Models, 2025, 137
  • [37] Tensioned quasi-interpolation via geometric continuity
    Lamberti, P
    Manni, C
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2004, 20 (1-3) : 105 - 127
  • [38] Basis Functions for Scattered Data Quasi-Interpolation
    Gruberger, Nira
    Levin, David
    CURVES AND SURFACES, 2015, 9213 : 263 - 271
  • [39] Optimal Control on Riemannian Manifolds by Interpolation
    Roberto Giambò
    Fabio Giannoni
    Paolo Piccione
    Mathematics of Control, Signals and Systems, 2004, 16 : 278 - 296
  • [40] Optimal control on Riemannian manifolds by interpolation
    Giambò, R
    Giannoni, F
    Piccione, P
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2004, 16 (04) : 278 - 296