Zeros of real irreducible characters of finite groups

被引:13
|
作者
Marinelli, Selena [1 ]
Tiep, Pham Huu [2 ]
机构
[1] Univ Pisa, Dipartimento Matemat L Tonelli, I-56127 Pisa, Italy
[2] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
real irreducible character; nonvanishing element; Frobenius-Schur indicator; VANISHING PRIME GRAPH; BRAUER CHARACTERS; CONJUGACY CLASSES; CLASS SIZES; REPRESENTATIONS; SUBGROUPS;
D O I
10.2140/ant.2013.7.567
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if all real-valued irreducible characters of a finite group G with Frobenius-Schur indicator 1 are nonzero at all 2-elements of G, then G has a normal Sylow 2-subgroup. This result generalizes the celebrated Ito-Michler theorem (for the prime 2 and real, absolutely irreducible, representations), as well as several recent results on nonvanishing elements of finite groups.
引用
收藏
页码:567 / 593
页数:27
相关论文
共 50 条