Bearing fault diagnosis method based on attention mechanism and multilayer fusion network

被引:47
|
作者
Li, Xiaohu [1 ,2 ]
Wan, Shaoke [1 ,2 ]
Liu, Shijie [1 ,2 ]
Zhang, Yanfei [3 ]
Hong, Jun [1 ,2 ]
Wang, Dongfeng [4 ]
机构
[1] Xi An Jiao Tong Univ, Key Lab Educ Minist Modern Design & Rotor Bearing, Xian, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Mech Engn, Xian, Peoples R China
[3] Xian Univ Technol, Sch Mech & Precis Instrument Engn, Xian, Peoples R China
[4] Henan Key Lab High Performance Bearing Technol, Luoyang, Henan, Peoples R China
关键词
Bearing fault diagnosis; Multi-sensor data fusion; Inception network; Attention mechanism; CONVOLUTIONAL NEURAL-NETWORK;
D O I
10.1016/j.isatra.2021.11.020
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The methods with multi-sensor data fusion have been a remarkable way to improve the accuracy and robustness of bearing fault diagnosis under complicated conditions. However, most of the existing fusion models or methods belong to single fusion level and simple fusion structure is usually utilized, and the correlation and complementarity of information between multi-sensor data might be easily ignored. In order to improve the performance of fault diagnosis with multi-sensor data fusion, this paper proposes a novel model of multi-layer deep fusion network with attention mechanism (AMMFN). The proposed model consists of a central network and multiple branch networks stacking by Inception networks, and the deep features of each single-sensor data are extracted automatically by the branch networks, and the extracted features of multi-sensor data at different levels are fused with the central network, and then the information interaction between multi-sensor data can be significantly enhanced and the adaptive hierarchical fusion of information can be achieved. Moreover, a fusion strategy based on attention mechanism is designed to extract more correlation information during the fusion of features extracted from multi-sensor data. Extensive experiments are also performed to evaluate the performance of proposed approach, and the comparison results with other methods indicate that the presented method takes higher accuracy and stronger generalization ability. (c) 2021 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:550 / 564
页数:15
相关论文
共 50 条
  • [11] Interpreting network knowledge with attention mechanism for bearing fault diagnosis
    Yang, Zhi-bo
    Zhang, Jun-peng
    Zhao, Zhi-bin
    Zhai, Zhi
    Chen, Xue-feng
    APPLIED SOFT COMPUTING, 2020, 97
  • [12] Rolling Bearing Fault Diagnosis Method Based on Attention CNN and BiLSTM Network
    Guo, Yurong
    Mao, Jian
    Zhao, Man
    NEURAL PROCESSING LETTERS, 2023, 55 (03) : 3377 - 3410
  • [13] Rolling Bearing Fault Diagnosis Method Based on Attention CNN and BiLSTM Network
    Yurong Guo
    Jian Mao
    Man Zhao
    Neural Processing Letters, 2023, 55 : 3377 - 3410
  • [14] Multi-View Information Fusion Fault Diagnosis Method Based on Attention Mechanism and Convolutional Neural Network
    Li, Hongmei
    Huang, Jinying
    Gao, Minjuan
    Yang, Luxia
    Bao, Yichen
    APPLIED SCIENCES-BASEL, 2022, 12 (22):
  • [15] Bearing Fault Diagnosis Under Multisensor Fusion Based on Modal Analysis and Graph Attention Network
    Meng, Ziran
    Zhu, Jun
    Cao, Shancheng
    Li, Pengfei
    Xu, Chao
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [16] Bearing fault diagnosis based on double-connected attention residual network and information fusion
    Zhang H.
    Yu Q.
    Qin C.
    Wang R.
    Zhang Y.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (20): : 114 - 123
  • [17] A Novel Rolling Bearing Fault Diagnosis Method Based on BLS and CNN with Attention Mechanism
    Wang, Xiaojia
    Hua, Tong
    Xu, Sheng
    Zhao, Xibin
    MACHINES, 2023, 11 (02)
  • [18] Bearing fault diagnosis method based on a multi-head graph attention network
    Jiang, Li
    Li, Xingjie
    Wu, Lin
    Li, Yibing
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (07)
  • [19] Fault Diagnosis Method for the Rolling Bearing Based on Information Fusion and BP Neural Network
    Zhang, Jinmin
    Huang, Yinhua
    Wang, Siming
    MATERIALS PROCESSING TECHNOLOGY II, PTS 1-4, 2012, 538-541 : 1956 - +
  • [20] Bearing Fault Diagnosis Using Convolutional Neural Network Based on a Multi-Attention Mechanism
    Kang T.
    Duan R.
    Yang L.
    Xue J.
    Liao Y.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2022, 56 (12): : 68 - 77