Evolution from covalent conjugation to non-covalent interaction in the ubiquitin-like ATG12 system

被引:37
|
作者
Pang, Yu [1 ]
Yamamoto, Hayashi [2 ]
Sakamoto, Hirokazu [2 ]
Oku, Masahide [3 ]
Mutungi, Joe Kimanthi [2 ,6 ]
Sahani, Mayurbhai Himatbhai [2 ,7 ]
Kurikawa, Yoshitaka [2 ]
Kita, Kiyoshi [4 ,8 ,9 ]
Noda, Nobuo N. [5 ]
Sakai, Yasuyoshi [3 ]
Jia, Honglin [1 ]
Mizushima, Noboru [2 ]
机构
[1] Chinese Acad Agr Sci, Harbin Vet Res Inst, State Key Lab Vet Biotechnol, Harbin, Heilongjiang, Peoples R China
[2] Univ Tokyo, Grad Sch Med, Dept Biochem & Mol Biol, Tokyo, Japan
[3] Kyoto Univ, Grad Sch Agr, Div Appl Life Sci, Kyoto, Japan
[4] Univ Tokyo, Grad Sch Med, Dept Biomed Chem, Tokyo, Japan
[5] Inst Microbial Chem BIKAKEN, Lab Struct Biol, Tokyo, Japan
[6] Univ Ghana, Coll Basic & Appl Sci, West African Ctr Cell Biol Infect Pathogens, Dept Biochem Cell & Mol Biol, Accra, Ghana
[7] Maharaja Sayajirao Univ Baroda, Fac Sci, Dr Vikram Sarabhai Inst Cell & Mol Biol, Pratapgunj, India
[8] Nagasaki Univ, Sch Trop Med & Global Hlth, Nagasaki, Japan
[9] Nagasaki Univ, Inst Trop Med NEKKEN, Dept Host Def Biochem, Nagasaki, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
PROTEIN; AUTOPHAGY; LIPIDATION; EXPRESSION; PARASITES; REVEALS; ENZYME; PAZ2;
D O I
10.1038/s41594-019-0204-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ubiquitin or ubiquitin-like proteins can be covalently conjugated to multiple proteins that do not necessarily have binding interfaces. Here, we show that an evolutionary transition from covalent conjugation to non-covalent interaction has occurred in the ubiquitin-like autophagy-related 12 (ATG12) conjugation system. ATG12 is covalently conjugated to its sole substrate, ATG5, by a ubiquitylation-like mechanism. However, the apicomplexan parasites Plasmodium and Toxoplasma and some yeast species such as Komagataella phaffii (previously Pichia pastoris) lack the E2-like enzyme ATG10 and the most carboxy (C)-terminal glycine of ATG12, both of which are required for covalent linkage. Instead, ATG12 in these organisms forms a non-covalent complex with ATG5. This non-covalent ATG12-ATG5 complex retains the ability to facilitate ATG8-phosphatidylethanolamine conjugation. These results suggest that ubiquitin-like covalent conjugation can evolve to a simpler non-covalent interaction, most probably when the system has a limited number of targets.
引用
收藏
页码:289 / +
页数:14
相关论文
共 46 条
  • [21] Insights into the non-covalent interaction between modified nucleobases and graphene nanoflake from first-principles
    Gao, Hongfeng
    Feng, Wei
    Li, Xiaolu
    Li, Na
    Du, Yao
    Wu, Yuhua
    Bai, Hongcun
    Qiao, Weiye
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2019, 107 : 73 - 79
  • [22] Non-covalent interaction between nucleocapsid protein of Tula hantavirus and small ubiquitin-related modifier-1, SUMO-1
    Kaukinen, P
    Vaheri, A
    Plyusnin, A
    VIRUS RESEARCH, 2003, 92 (01) : 37 - 45
  • [23] Guanidine-phosphate non-covalent interaction in LAP crystal growth solution evidenced from spectroscopy studies
    Wang, L.
    Zhang, G. H.
    Wang, X. Q.
    Zhu, L. Y.
    Xu, D.
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2015, 148 : 12 - 17
  • [24] Non-covalent interaction between ferulic acid and arabinan-rich pectic polysaccharide from rapeseed meal
    Zhang, Dongxian
    Zhu, Jianfei
    Ye, Fayin
    Zhao, Guohua
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2017, 103 : 307 - 315
  • [25] Role of Non-covalent Interaction toward Conductivity in a One-Dimensional Tube-like Silver-Thiolate Structure
    Ramachandran, Rahul M.
    Biswas, Sourav
    Polentarutti, Maurizio
    Sengupta, Turbasu
    Khanna, Shiv N.
    Mandal, Sukhendu
    CRYSTAL GROWTH & DESIGN, 2023, 23 (05) : 3164 - 3170
  • [26] Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors
    Jerzy Osipiuk
    Saara-Anne Azizi
    Steve Dvorkin
    Michael Endres
    Robert Jedrzejczak
    Krysten A. Jones
    Soowon Kang
    Rahul S. Kathayat
    Youngchang Kim
    Vladislav G. Lisnyak
    Samantha L. Maki
    Vlad Nicolaescu
    Cooper A. Taylor
    Christine Tesar
    Yu-An Zhang
    Zhiyao Zhou
    Glenn Randall
    Karolina Michalska
    Scott A. Snyder
    Bryan C. Dickinson
    Andrzej Joachimiak
    Nature Communications, 12
  • [27] Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors
    Osipiuk, Jerzy
    Azizi, Saara-Anne
    Dvorkin, Steve
    Endres, Michael
    Jedrzejczak, Robert
    Jones, Krysten A.
    Kang, Soowon
    Kathayat, Rahul S.
    Kim, Youngchang
    Lisnyak, Vladislav G.
    Maki, Samantha L.
    Nicolaescu, Vlad
    Taylor, Cooper A.
    Tesar, Christine
    Zhang, Yu-An
    Zhou, Zhiyao
    Randall, Glenn
    Michalska, Karolina
    Snyder, Scott A.
    Dickinson, Bryan C.
    Joachimiak, Andrzej
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [28] In silico design of a lipid-like compound targeting KRAS4B-G12D through non-covalent bonds
    Lu, Huixia
    Hu, Zheyao
    Faraudo, Jordi
    Marti, Jordi
    NANOSCALE, 2023, 15 (47) : 19359 - 19368
  • [29] Structure of a SUMO-binding-motif mimic bound to Smt3p-Ubc9p: Conservation of a non-covalent ubiquitin-like protein-E2 complex as a platform for selective interactions within a SUMO pathway
    Duda, David M.
    van Waardenburg, Robert C. A. M.
    Borg, Laura A.
    McGarity, Sierra
    Nourse, Amanda
    Waddell, M. Brett
    Bjornsti, Mary-Ann
    Schulman, Brenda A.
    JOURNAL OF MOLECULAR BIOLOGY, 2007, 369 (03) : 619 - 630
  • [30] The Eag Domain Regulates Outward Current Density and Recovery from Inactivation of the hERG K+ Channel Through a Non-Covalent Interaction
    Gustina, Ahleah S.
    Trudeau, Matthew C.
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 119A - 120A