The cluster bootstrap resamples clusters or subjects instead of individual observations in order to preserve the dependence within each cluster or subject. In this paper, we provide a theoretical justification of using the cluster bootstrap for the inferences of the generalized estimating equations (GEE) for clustered/longitudinal data. Under the general exchangeable bootstrap weights, we show that the cluster bootstrap yields a consistent approximation of the distribution of the regression estimate, and a consistent approximation of the confidence sets. We also show that a computationally more efficient one-step version of the cluster bootstrap provides asymptotically equivalent inference. Published by Elsevier Inc.
机构:
Univ Sao Paulo, Inst Math & Stat, Dept Stat, BR-05311970 Sao Paulo, BrazilUniv Sao Paulo, Inst Math & Stat, Dept Stat, BR-05311970 Sao Paulo, Brazil
Venezuela, Maria Kelly
Botter, Denise Aparecida
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Math & Stat, Dept Stat, BR-05311970 Sao Paulo, BrazilUniv Sao Paulo, Inst Math & Stat, Dept Stat, BR-05311970 Sao Paulo, Brazil
Botter, Denise Aparecida
Sandoval, Monica Carneiro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Math & Stat, Dept Stat, BR-05311970 Sao Paulo, BrazilUniv Sao Paulo, Inst Math & Stat, Dept Stat, BR-05311970 Sao Paulo, Brazil
机构:
Washington Univ, Sch Med, Dept Surg, Div Publ Hlth Sci, 660 S Euclid Ave, St Louis, MO 63110 USA
Washington Univ, Sch Med, Div Biostat, 660 S Euclid Ave, St Louis, MO 63110 USAWashington Univ, Sch Med, Dept Surg, Div Publ Hlth Sci, 660 S Euclid Ave, St Louis, MO 63110 USA
Liu, Jingxia
Li, Fan
论文数: 0引用数: 0
h-index: 0
机构:
Yale Univ, Dept Biostat, New Haven, CT USAWashington Univ, Sch Med, Dept Surg, Div Publ Hlth Sci, 660 S Euclid Ave, St Louis, MO 63110 USA