Dual photonic band gap and reversible tuning of 3D photonic crystal fabricated by multiphoton polymerization with photoresponsive polymer

被引:10
|
作者
Ya, Qi [1 ,2 ,3 ]
Chen, Wei-Qiang [1 ,2 ]
Dong, Xian-Zi [1 ,2 ,3 ]
Rodgers, Thomas [4 ]
Nakanishi, Sana [4 ]
Shoji, Satoru [4 ]
Duan, Xuan-Ming [1 ,2 ]
Kawata, Satoshi [4 ]
机构
[1] Chinese Acad Sci, Lab Organ NanoPhoton, Beijing 100080, Peoples R China
[2] Chinese Acad Sci, Tech Inst Phys & Chem, Key Lab Photochem Convers & Optoelect Mat, Beijing 100080, Peoples R China
[3] Chinese Acad Sci, Grad Sch, Beijing 100080, Peoples R China
[4] Osaka Univ, Dept Appl Phys, Suita, Osaka 5650871, Japan
来源
基金
日本科学技术振兴机构; 中国国家自然科学基金;
关键词
D O I
10.1007/s00339-008-4789-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A 3D woodpile photonic crystal (PhC) composed of two parts with different periodic parameters was fabricated with a novel photoresist containing photoresponsive azobenzene moieties by multiphoton polymerization. Dual photonic band gaps (PBGs) were experimentally measured, which were attributed to two independent parts of the 3D PhC with different periodicities. Under light irradiation, PBG tuning of 36 nm was obtained, and this tuning behavior showed good reversibility.
引用
收藏
页码:393 / 398
页数:6
相关论文
共 50 条
  • [21] Nonlinear tuning of 3D photonic band-gap structures for single-photon on demand sources
    Florescu, Marian
    Scheel, Stefan
    Lee, Hwang
    Knight, Peter L.
    Dowling, Jonathan P.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 32 (1-2): : 484 - 487
  • [22] Constructing 3D crystal templates for photonic band gap materials using holographic optical tweezers
    Benito, D. C.
    Carberry, D. M.
    Simpson, S. H.
    Gibson, G. M.
    Padgett, M. J.
    Rarity, J. G.
    Miles, M. J.
    Hanna, S.
    OPTICS EXPRESS, 2008, 16 (17) : 13005 - 13015
  • [23] Absorption Enhancement of a Thin Silicon Film with a 3D Photonic band gap crystal back reflector
    Devashish, D.
    Saive, R.
    van der Vegt, J. J. W.
    Vos, Willem L.
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,
  • [24] 2D photonic crystal bend operating at high photonic band gap frequencies
    Li, YZ
    Li, LM
    Zi, J
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 2003, 42 (3B): : L294 - L296
  • [25] Thermal Effect on Photonic Band Gap in Semiconductor Based 1D Photonic Crystal
    Malik, J. V.
    Kumar, Arun
    Kumar, Vipin
    Kumar, Arvind
    Singh, T. P.
    PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS & MATERIAL SCIENCE (RAM 2013), 2013, 1536 : 733 - +
  • [26] Defect inscription and observation in 3D photonic band gap opal templates
    Boyle, M.
    Neumeister, A.
    Zinn, J.
    Wohlleben, W.
    Leyrer, R. J.
    PHOTONIC CRYSTAL MATERIALS AND DEVICES VII, 2008, 6901
  • [27] FEM modelling of 3D photonic crystals and photonic crystal waveguides
    Burger, S
    Klose, R
    Schädle, A
    Schmidt, F
    Zschiedrich, L
    INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES IX, 2005, 5728 : 164 - 173
  • [28] Simulation of band gap structures of 1D photonic crystal
    Wang, R. L.
    Zhang, J.
    Hu, Q. F.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2008, 52 : S71 - S74
  • [29] 3D photonic crystals fabricated by micromanipulation technique
    Aoki, K
    Miyazaki, HT
    Hirayama, H
    Inoshita, K
    Baba, T
    Shinya, N
    Aoyagi, Y
    MATERIALS AND DEVICES FOR OPTOELECTRONICS AND MICROPHOTONICS, 2002, 722 : 475 - 480
  • [30] 3D PHOTONIC CRYSTALS FABRICATED BY NANOIMPRINT LITHOGRAPHY
    Eibelhuber, M.
    Matthias, T.
    Glinsner, T.
    2014 INTERNATIONAL CONFERENCE ON OPTICAL MEMS AND NANOPHOTONICS (OMN), 2014, : 205 - 206