Dirichlet's principle and wellposedness of solutions for a nonlocal p-Laplacian system

被引:27
|
作者
Hinds, Brittney [1 ]
Radu, Petronela [1 ]
机构
[1] Univ Nebraska, Lincoln, NE 68588 USA
基金
美国国家科学基金会;
关键词
Peridynamics; Dirichlet's principle; Nonlocal p-Laplacian; Singular kernel; EVOLUTION EQUATION; MODEL;
D O I
10.1016/j.amc.2012.07.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove Dirichlet's principle for a nonlocal p-Laplacian system which arises in the nonlocal setting of peridynamics when p = 2. This nonlinear model includes boundary conditions imposed on a nonzero volume collar surrounding the domain. Our analysis uses nonlocal versions of integration by parts techniques that resemble the classical Green and Gauss identities. The nonlocal energy functional associated with this "elliptic'' type system exhibits a general kernel which could be weakly singular. The coercivity of the system is shown by employing a nonlocal Poincare's inequality. We use the direct method in calculus of variations to show existence and uniqueness of minimizers for the nonlocal energy, from which we obtain the wellposedness of this steady state diffusion system. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1411 / 1419
页数:9
相关论文
共 50 条
  • [11] Infinitely many solutions for a Dirichlet problem involving the p-Laplacian
    Bonanno, Gabriele
    Bisci, Giovanni Molica
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2010, 140 : 737 - 752
  • [12] On the Existence of Solutions of the Dirichlet Problem for the p-Laplacian on Riemannian Manifolds
    Bakiev, S. M.
    Kon'kov, A. A.
    MATHEMATICAL NOTES, 2023, 114 (5-6) : 679 - 686
  • [13] Solutions to semilinear p-Laplacian Dirichlet problem in population dynamics
    R. A. Mashiyev
    G. Alisoy
    S. Ogras
    Applied Mathematics and Mechanics, 2010, 31 : 247 - 254
  • [14] Positive Solutions for Dirichlet BVP of PDE Involving φp-Laplacian
    Xiong, Feng
    Huang, Wentao
    FRACTAL AND FRACTIONAL, 2024, 8 (03)
  • [15] A numerical algorithm for finding solutions of p-Laplacian Dirichlet problems
    Afrouzi, G. A.
    Naghizadeh, Z.
    Mahdavi, S.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 185 (01) : 213 - 217
  • [16] Solutions to semilinear p-Laplacian Dirichlet problem in population dynamics
    R.A.MASHIYEV1
    G.ALISOY
    S.OGRAS
    Applied Mathematics and Mechanics(English Edition), 2010, 31 (02) : 247 - 254
  • [17] Solutions to semilinear p-Laplacian Dirichlet problem in population dynamics
    Mashiyev, R. A.
    Alisoy, G.
    Ogras, S.
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2010, 31 (02) : 247 - 254
  • [18] Infinitely many solutions for the Dirichlet problem involving the p-Laplacian
    Cammaroto, F
    Chinnì, A
    Di Bella, B
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 61 (1-2) : 41 - 49
  • [19] Multiplicity of positive solutions for a degenerate nonlocal problem with p-Laplacian
    Candito, Pasquale
    Gasinski, Leszek
    Livrea, Roberto
    Santos Junior, Joao R.
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 357 - 368
  • [20] Existence and multiplicity of positive solutions for the p-Laplacian with nonlocal coefficient
    Bueno, H.
    Ercole, G.
    Ferreira, W.
    Zumpano, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (01) : 151 - 158