The globally stable solution of a stochastic nonlinear Schrodinger equation

被引:5
|
作者
Khasin, M. [1 ]
Kosloff, R. [1 ]
机构
[1] Hebrew Univ Jerusalem, Fritz Haber Res Ctr Mol Dynam, IL-91904 Jerusalem, Israel
关键词
D O I
10.1088/1751-8113/41/36/365203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Weak measurement of a subset of noncommuting observables of a quantum system can be modeled by the open-system evolution, governed by the master equation in the Lindblad form. The open-system density operator can be represented as a statistical mixture over non-unitarily evolving pure states, driven by the stochastic nonlinear Schrodinger equation (sNLSE). The globally stable solution of the sNLSE is obtained in the case where the measured subset of observables comprises the spectrum-generating algebra of the system. This solution is a generalized coherent state (GCS), associated with the algebra. The result is based on proving that the GCS minimizes the trace-norm of the covariance matrix, associated with the spectrum-generating algebra.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Drifting of the solution pattern for the nonlinear Schrodinger equation
    Tan, Y
    Mao, JM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (49): : 9119 - 9130
  • [22] Parallel implementation of the solution of the nonlinear Schrodinger equation
    Koga, JK
    PARALLEL COMPUTATIONAL FLUID DYNAMICS: NEW FRONTIERS AND MULTI-DISCIPLINARY APPLICATIONS, PROCEEDINGS, 2003, : 483 - 490
  • [23] A solution of nonlinear Schrodinger equation on metric graphs
    Sabirov, K. K.
    Khalmukhamedov, A. R.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2015, 6 (02): : 162 - 172
  • [24] Existence of solution for a supercritical nonlinear Schrodinger equation
    Faria, Luiz F. O.
    Montenegro, Marcelo
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (01) : 1 - 28
  • [25] An analytical solution to the dissipative nonlinear Schrodinger equation
    Demiray, H
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 145 (01) : 179 - 184
  • [26] On the Weak Solution to a Fractional Nonlinear Schrodinger Equation
    Zhang, Zujin
    Wang, Xiaofeng
    Yao, Zheng-an
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [28] A positive solution for a nonlinear Schrodinger equation on RN
    Jeanjean, L
    Tanaka, K
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (02) : 443 - 464
  • [29] OPTIMAL CONTROL FOR STOCHASTIC NONLINEAR SCHRODINGER EQUATION ON GRAPH
    Cui, Jianbo
    Liu, Shu
    Zhou, Haomin
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (04) : 2021 - 2042
  • [30] An Algebraic and Microlocal Approach to the Stochastic Nonlinear Schrodinger Equation
    Bonicelli, Alberto
    Dappiaggi, Claudio
    Rinaldi, Paolo
    ANNALES HENRI POINCARE, 2023, 24 (07): : 2443 - 2482