Motor dysfunction in Drosophila melanogaster as a biomarker for developmental neurotoxicity

被引:9
|
作者
Cabrita, Ana [1 ]
Medeiros, Alexandra M. [1 ]
Pereira, Telmo [2 ]
Rodrigues, Antonio Sebastiao [3 ]
Kranendonk, Michel [3 ]
Mendes, Cesar S. [1 ]
机构
[1] Univ Nova Lisboa, NOVA Med Sch, NMS FCM, iNOVA4Hlth,Fac Ciencias Med, Lisbon, Portugal
[2] Univ Nova Lisboa, NOVA Med Sch, NMS FCM, Fac Ciencias Med, Lisbon, Portugal
[3] Univ Nova Lisboa, NOVA Med Sch, NMS FCM, Tox,Fac Ciencias Med, Lisbon, Portugal
基金
欧盟地平线“2020”;
关键词
METHYLAMINO-L-ALANINE; DIMETHYL-SULFOXIDE; CYANOBACTERIAL NEUROTOXIN; BMAA NEUROTOXICITY; PRENATAL EXPOSURE; TOLUENE; DNT; CHLORPYRIFOS; PATHWAYS; DROSOPHOTOXICOLOGY;
D O I
10.1016/j.isci.2022.104541
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Adequate alternatives to conventional animal testing are needed to study developmental neurotoxicity (DNT). Here, we used kinematic analysis to assess DNT of known (toluene (TOL) and chiorpyrifos (CPS)) and putative (beta-N-methylamino-L-alanine (BMAA)) neurotoxic compounds. Drosophila melanogaster was exposed to these compounds during development and evaluated for survival and adult kinematic parameters using the FlyWalker system, a kinematics evaluation method. At concentrations that do not induce general toxicity, the solvent DMSO had a significant effect on kinematic parameters. Moreover, while TOL did not significantly induce lethality or kinematic dysfunction, CPS not only induced developmental lethality but also significantly impaired coordination in comparison to DMSO. Interestingly, BMAA, which was not lethal during development, induced motor decay in young adult animals, phenotypically, resembling aged flies, an effect later attenuated upon aging. Furthermore, BMAA induced abnormal development of leg motor neuron projections. Our results suggest that our kinematic approach can assess potential DNT of chemical compounds.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Developmental Pathways of Motor Dysfunction
    Kleven, Gale A.
    Bellinger, Seanceray A.
    DEVELOPMENTAL PSYCHOBIOLOGY, 2015, 57 (04) : 435 - 446
  • [32] DEVELOPMENTAL EXPRESSION OF THE RUDIMENTARY LOCUS IN DROSOPHILA-MELANOGASTER
    EEKEN, J
    MEHL, Y
    TOSTA, Z
    JARRY, BP
    JOURNAL OF SUPRAMOLECULAR STRUCTURE, 1979, : 53 - 53
  • [33] DEVELOPMENTAL AUTONOMY OF EXTRA SEX COMBS IN DROSOPHILA MELANOGASTER
    TOKUNAGA, C
    STERN, C
    DEVELOPMENTAL BIOLOGY, 1965, 11 (01) : 50 - &
  • [34] The developmental basis for germline mosaicism in mouse and Drosophila melanogaster
    Drost, JB
    Lee, WR
    GENETICA, 1998, 102-3 (0) : 421 - 443
  • [35] DEVELOPMENTAL FATE OF POLE CELLS IN DROSOPHILA-MELANOGASTER
    UNDERWOOD, EM
    CAULTON, JH
    ALLIS, CD
    MAHOWALD, AP
    DEVELOPMENTAL BIOLOGY, 1980, 77 (02) : 303 - 314
  • [36] DEVELOPMENTAL REGULATION OF XANTHINE DEHYDROGENASE IN DROSOPHILA-MELANOGASTER
    ODONNELL, J
    CLARK, S
    CHOVNICK, A
    JOURNAL OF SUPRAMOLECULAR STRUCTURE, 1977, : 62 - 62
  • [37] Effect of Cypermethrin on Some Developmental Stages of Drosophila melanogaster
    Ayla Karataş
    Zafer Bahçeci
    Bulletin of Environmental Contamination and Toxicology, 2009, 82 : 738 - 742
  • [38] Subdivision and developmental fate of the head mesoderm in Drosophila melanogaster
    Begona de Velasco
    Lolitika Mandal
    Marianna Mkrtchyan
    Volker Hartenstein
    Development Genes and Evolution, 2006, 216 : 39 - 51
  • [39] Subdivision and developmental fate of the head mesoderm in Drosophila melanogaster
    de Velasco, B
    Mandal, L
    Mkrtchyan, M
    Hartenstein, V
    DEVELOPMENT GENES AND EVOLUTION, 2006, 216 (01) : 39 - 51
  • [40] Developmental profiles of PERIOD and DOUBLETIME in Drosophila melanogaster ovary
    Kotwica, Joanna
    Larson, Maureen K.
    Bebas, Piotr
    Giebultowicz, Jadwiga M.
    JOURNAL OF INSECT PHYSIOLOGY, 2009, 55 (05) : 419 - 425