Numerical investigation of magnetic multiphase flows by the fractional-step-based multiphase lattice Boltzmann method

被引:37
|
作者
Li, Xiang [1 ,2 ,3 ]
Dong, Zhi-Qiang [1 ,2 ,3 ]
Yu, Peng [2 ,3 ,4 ,5 ]
Niu, Xiao-Dong [6 ]
Wang, Lian-Ping [2 ,3 ,4 ,7 ]
Li, De-Cai [8 ]
Yamaguchi, Hiroshi [9 ]
机构
[1] Harbin Inst Technol, Harbin 515063, Peoples R China
[2] Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Shenzhen 518055, Peoples R China
[3] Southern Univ Sci & Technol, Ctr Complex Flows & Soft Matter Res, Shenzhen 518055, Peoples R China
[4] Southern Univ Sci & Technol, Guangdong Prov Key Lab Turbulence Res & Applicat, Shenzhen 518055, Peoples R China
[5] Southern Univ Sci & Technol, Shenzhen Key Lab Complex Aerosp Flows, Shenzhen 518055, Peoples R China
[6] Shantou Univ, Coll Engn, 243 Daxue Rd, Shantou 515063, Peoples R China
[7] Univ Delaware, Dept Mech Engn, Delaware, OH 19716 USA
[8] Tsinghua Univ, Dept Mech Engn, Beijing 100084, Peoples R China
[9] Doshisha Univ, Energy Convers Res Ctr, Kyoto 6300321, Japan
基金
中国国家自然科学基金;
关键词
MHD NATURAL-CONVECTION; SIMULATION; CAVITY; MODEL;
D O I
10.1063/5.0020903
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In the present study, a fractional-step-based multiphase lattice Boltzmann (LB) method coupled with a solution of a magnetic field evolution is developed to predict the interface behavior in magnetic multiphase flows. The incompressible Navier-Stokes equations are utilized for the flow field, while the Cahn-Hilliard equation is adopted to track the interface, and these governing equations are solved by reconstructing solutions within the LB framework with the prediction-correction step based on a fractional-step method. The proposed numerical model inherits the excellent performance of kinetic theory from the LB method and integrates the good numerical stability from the fractional-step method. Meanwhile, the macroscopic variables can be simply and directly calculated by the equilibrium distribution functions, which saves the virtual memories and simplifies the computational process. The proposed numerical model is validated by simulating two problems, i.e., a bubble rising with a density ratio of 1000 and a viscosity ratio of 100 and a stationary circular cylinder under an external uniform magnetic field. The interfacial deformations of a ferrofluid droplet in organic oil and an aqueous droplet in ferrofluid under the external magnetic field are, then, simulated, and the underlying mechanisms are discussed. Moreover, the rising process of a gas bubble in the ferrofluid is investigated, which shows that the rising velocity is accelerated under the effect of the external magnetic field. All the numerical examples demonstrate the capability of the present numerical method to handle the problem with the interfacial deformation in magnetic multiphase flows.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Unified simplified multiphase lattice Boltzmann method for ferrofluid flows and its application
    Li, Qiao-Zhong
    Lu, Zhi-Liang
    Zhou, Di
    Niu, Xiao-Dong
    Guo, Tong-Qin
    Du, Bing-Chen
    PHYSICS OF FLUIDS, 2020, 32 (09)
  • [32] Simulation of multiphase flows with variable surface tension using the Lattice Boltzmann method
    Stensholt, S.
    ADVANCES IN FLUID MECHANICS VIII, 2010, : 497 - 506
  • [33] Entropic lattice Boltzmann method for multiphase flows: Fluid-solid interfaces
    Mazloomi, Ali M.
    Chikatamarla, Shyam S.
    Karlin, Iliya V.
    PHYSICAL REVIEW E, 2015, 92 (02):
  • [34] Multiphase lattice Boltzmann method for particle suspensions
    Joshi, Abhijit S.
    Sun, Ying
    PHYSICAL REVIEW E, 2009, 79 (06):
  • [35] Evolution of Multiphase Lattice Boltzmann Method: A Review
    Sudhakar T.
    Das A.K.
    Das, Arup Kumar (arup.das@me.iitr.ac.in), 1600, Springer (101): : 711 - 719
  • [36] Numerical Investigation of Droplet Impact on the Surface by Multiphase Lattice Boltzmann Flux Solver
    Bian, Qingyong
    Shu, Chang
    Zhao, Ning
    Zhu, Chengxiang
    Zhu, Chunling
    PROCEEDINGS OF THE 2021 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON AEROSPACE TECHNOLOGY (APISAT 2021), VOL 1, 2023, 912 : 671 - 684
  • [37] Phase-field-based lattice Boltzmann model for axisymmetric multiphase flows
    Liang, H.
    Chai, Z. H.
    Shi, B. C.
    Guo, Z. L.
    Zhang, T.
    PHYSICAL REVIEW E, 2014, 90 (06):
  • [38] A mass-conserved fractional step axisymmetric lattice Boltzmann flux solver for incompressible multiphase flows with large density ratio
    Yang, Liuming
    Shu, Chang
    Yu, Yang
    Wang, Yan
    Hou, Guoxiang
    PHYSICS OF FLUIDS, 2020, 32 (10)
  • [39] Analysis and reconstruction of the multiphase lattice Boltzmann flux solver for multiphase flows with large density ratios
    Lu, Jinhua
    Adams, Nikolaus A.
    Yu, Peng
    PHYSICAL REVIEW E, 2022, 106 (04)
  • [40] Phase-field-based lattice Boltzmann model for multiphase ferrofluid flows
    Hu, Yang
    Li, Decai
    Niu, Xiaodong
    PHYSICAL REVIEW E, 2018, 98 (03)