DIRICHLET PROBLEM OF POISSON EQUATIONS AND VARIATIONAL PRINCIPLE ON A TYPE OF FRACTAL SETS

被引:8
|
作者
Wu, Yipeng [1 ]
Yao, Kui [1 ]
Mu, Lei [1 ]
Chen, Zhilong [1 ]
机构
[1] Army Engn Univ PLA, Nanjing 211101, Peoples R China
关键词
The Level-3 Sierpinski Gasket; Green's Function; Variational Principle; Dirichlet Problem; REAL LINE; CALCULUS; SUBSETS;
D O I
10.1142/S0218348X20500905
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studied the level-3 Sierpinski gasket. We solved Dirichlet problem of Poisson equations and proved variational principle on the level-3 Sierpinski gasket by expressing Green's function explicitly.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] MIXED PROBLEM OF CAUCHY-DIRICHLET TYPE FOR HYPERBOLIC EQUATIONS
    LOPATINS.YB
    [J]. DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1970, (07): : 592 - &
  • [42] THE GENERALIZED DIRICHLET PROBLEM FOR EQUATIONS OF MONGE-AMPERE TYPE
    URBAS, JIE
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1986, 3 (03): : 209 - 228
  • [43] On the Dirichlet problem for Monge-Ampère type equations
    Feida Jiang
    Neil S. Trudinger
    Xiao-Ping Yang
    [J]. Calculus of Variations and Partial Differential Equations, 2014, 49 : 1223 - 1236
  • [44] THE SOLVABILITY OF THE DIRICHLET PROBLEM FOR MONGE-AMPERE-TYPE EQUATIONS
    IVOCHKINA, NM
    [J]. DOKLADY AKADEMII NAUK SSSR, 1984, 279 (04): : 796 - 798
  • [45] Dirichlet problem for mixed-type equations in a rectangular domain
    K. B. Sabitov
    [J]. Doklady Mathematics, 2007, 75 : 193 - 196
  • [46] On a strong minimum condition of a fractal variational principle
    He, Ji-Huan
    Qie, Na
    He, Chun-hui
    Saeed, Tareq
    [J]. APPLIED MATHEMATICS LETTERS, 2021, 119 (119)
  • [47] ON THE GENERALIZED VARIATIONAL PRINCIPLE OF THE FRACTAL GARDNER EQUATION
    Wang, Kang-jia
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (09)
  • [48] A REMARK ON WANG'S FRACTAL VARIATIONAL PRINCIPLE
    Wang, Kang-Le
    He, Chun-Hui
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (08)
  • [49] THE DIRICHLET PROBLEM WITHOUT THE MAXIMUM PRINCIPLE
    Arendt, Wolfgang
    Ter Elst, A. F. M.
    [J]. ANNALES DE L INSTITUT FOURIER, 2019, 69 (02) : 763 - 782
  • [50] A VARIATIONAL PRINCIPLE FOR A DIFFUSION PROBLEM
    ATANACKOVIC, TM
    DJUKIC, DS
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1982, 62 (08): : 417 - 418