Mixing properties of one-dimensional cellular automata

被引:13
|
作者
Kleveland, R
机构
关键词
D O I
10.1090/S0002-9939-97-03708-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a class of endomorphisms on the space of bi-infinite sequences over a finite set, and show that such a map is onto if and only if it is measure-preserving. A class of dynamical systems arising from these endomorphisms are strongly mixing, and some of them even m-mixing. Some of these are isomorphic to the one-sided shift on Z(n), in both the topological and measure-theoretical sense. Such dynamical systems can be associated to O-n, the Cuntz-algebra of order n, in a natural way.
引用
下载
收藏
页码:1755 / 1766
页数:12
相关论文
共 50 条
  • [31] ONE-DIMENSIONAL CELLULAR AUTOMATA AS ARITHMETIC RECURSIONS
    URIAS, J
    PHYSICA D, 1989, 36 (1-2): : 109 - 110
  • [32] An Observation of Cryptographic Properties of 256 One-Dimensional Cellular Automata Rules
    Jamil, Norziana
    Mahmood, Ramlan
    Z'aba, Muhammad Reza
    Zukarnaen, Zuriati Ahmad
    Udzir, Nur Izura
    INFORMATICS ENGINEERING AND INFORMATION SCIENCE, PT I, 2011, 251 : 409 - +
  • [33] Matrix methods and local properties of reversible one-dimensional cellular automata
    Mora, JCST
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (27): : 5563 - 5573
  • [34] Some Undecidable Dynamical Properties for One-Dimensional Reversible Cellular Automata
    Kari, Jarkko
    Lukkarila, Ville
    ALGORITHMIC BIOPROCESSES, 2009, : 639 - 660
  • [35] Topological and measure-theoretic properties of one-dimensional cellular automata
    Blanchard, F
    Kurka, P
    Maass, A
    PHYSICA D, 1997, 103 (1-4): : 86 - 99
  • [36] From One-dimensional to Two-dimensional Cellular Automata
    Dennunzio, Alberto
    FUNDAMENTA INFORMATICAE, 2012, 115 (01) : 87 - 105
  • [37] INVARIANT STRINGS AND PATTERN-RECOGNIZING PROPERTIES OF ONE-DIMENSIONAL CELLULAR AUTOMATA
    JEN, E
    JOURNAL OF STATISTICAL PHYSICS, 1986, 43 (1-2) : 243 - 265
  • [38] Symmetry and Entropy of One-Dimensional Legal Cellular Automata
    Yamasaki, Kazuhito
    Nanjo, Kazuyoshi Z.
    Chiba, Satoshi
    COMPLEX SYSTEMS, 2012, 20 (04): : 351 - 361
  • [39] Entanglement dynamics in one-dimensional quantum cellular automata
    Brennen, GK
    Williams, JE
    PHYSICAL REVIEW A, 2003, 68 (04): : 1 - 042311
  • [40] The intrinsic universality problem of one-dimensional cellular automata
    Ollinger, N
    STACS 2003, PROCEEDINGS, 2003, 2607 : 632 - 641