Multiple-trait random regression models for the estimation of genetic parameters for milk, fat, and protein yield in buffaloes

被引:16
|
作者
Aspilcueta Borquis, Rusbel Raul [1 ]
de Araujo Neto, Francisco Ribeiro [1 ]
Baldi, Fernando [1 ]
Hurtado-Lugo, Naudin [1 ]
de Camargo, Gregorio M. F. [1 ]
Munoz-Berrocal, Milthon [2 ]
Tonhati, Humberto [1 ,3 ,4 ]
机构
[1] Sao Paulo State Univ, Dept Anim Sci, BR-14884900 Jaboticabal, SP, Brazil
[2] Univ Nacl Agraria Selva, Tingo Maria, Peru
[3] Conselho Nacl Desenvolvimento Cientif & Tecnol, BR-36570000 Vicosa, MG, Brazil
[4] Inst Nacl Ciencia Tecnol Ciencia Anim, BR-36570000 Vicosa, MG, Brazil
基金
巴西圣保罗研究基金会;
关键词
covariance functions; heritability; Legendre polynomials; MURRAH BUFFALOS; VARIANCE-COMPONENTS; QUALITY; CATTLE;
D O I
10.3168/jds.2012-6023
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
In this study, genetic parameters for test-day milk, fat, and protein yield were estimated for the first lactation. The data analyzed consisted of 1,433 first lactations of Murrah buffaloes, daughters of 113 sires from 12 herds in the state of So Paulo, Brazil, with calvings from 1985 to 2007. Ten-month classes of lactation days were considered for the test-day yields. The (co)variance components for the 3 traits were estimated using the regression analyses by Bayesian inference applying an animal model by Gibbs sampling. The contemporary groups were defined as herd-year-month of the test day. In the model, the random effects were additive genetic, permanent environment, and residual. The fixed effects were contemporary group and number of milkings (1 or 2), the linear and quadratic effects of the covariable age of the buffalo at calving, as well as the mean lactation curve of the population, which was modeled by orthogonal Legendre polynomials of fourth order. The random effects for the traits studied were modeled by Legendre polynomials of third and fourth order for additive genetic and permanent environment, respectively, the residual variances were modeled considering 4 residual classes. The heritability estimates for the traits were moderate (from 0.21-0.38), with higher estimates in the intermediate lactation phase. The genetic correlation estimates within and among the traits varied from 0.05 to 0.99. The results indicate that the selection for any trait test day will result in an indirect genetic gain for milk, fat, and protein yield in all periods of the lactation curve. The accuracy associated with estimated breeding values obtained using multi-trait random regression was slightly higher (around 8%) compared with single-trait random regression. This difference may be because to the greater amount of information available per animal.
引用
收藏
页码:5923 / 5932
页数:10
相关论文
共 50 条
  • [31] Estimation of genetic parameters for test day milk yield of first lactation Jersey cows using repeatability and random regression models
    Laurino Dionello, Nelson Jose
    Soares da Silva, Carlos Alberto
    Costa, Claudio Napolis
    Cobuci, Jaime Araujo
    [J]. REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, 2006, 35 (04): : 1646 - 1652
  • [32] Multiple-trait random regression modeling of feed efficiency in US Holsteins
    Khanal, P.
    Gaddis, K. L. Parker
    Vandehaar, M. J.
    Weigel, K. A.
    White, H. M.
    Penagaricano, F.
    Koltes, J. E.
    Santos, J. E. P.
    Baldwin, R. L.
    Burchard, J. F.
    Durr, J. W.
    Tempelman, R. J.
    [J]. JOURNAL OF DAIRY SCIENCE, 2022, 105 (07) : 5954 - 5971
  • [33] Estimation of genetic parameters and trends for milk fat and protein percentages in Iranian Holsteins using random regression test day model
    Khanzadeh, Hassan
    Hossein-Zadeh, Navid Ghavi
    Naserani, Mohammad
    [J]. ARCHIV FUR TIERZUCHT-ARCHIVES OF ANIMAL BREEDING, 2013, 56
  • [34] Genetic parameter estimation for milk yield over multiple parities and various lengths of lactation in Danish jerseys by random regression models
    Guo, Z
    Lund, MS
    Madsen, P
    Korsgaard, I
    Jensen, J
    [J]. JOURNAL OF DAIRY SCIENCE, 2002, 85 (06) : 1596 - 1606
  • [35] Estimation of genetic parameters for milk yield of dairy goats by random regression analysis using Gibbs Sampling
    Lessa de Assis, Giselle Mariano
    Galvao de Albuquerque, Lucia
    Rocha Sarmento Junior, Jose Lindenberg
    Lopes, Paulo Savio
    Rodrigues, Marcelo Teixeira
    [J]. REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, 2006, 35 (03): : 706 - 714
  • [36] Estimates of genetic parameters for fat yield in Murrah buffaloes
    Kumar, Manoj
    Vohra, Vikas
    Ratwan, Poonam
    Valsalan, Jamuna
    Patil, C. S.
    Chakravarty, A. K.
    [J]. VETERINARY WORLD, 2016, 9 (03) : 295 - 298
  • [37] Estimates of genetic parameters for milk yield and persistency of lactation of Gyr cows, applying random regression models
    Gonzalez Herrera, Luis Gabriel
    El Faro, Lenira
    de Albuquerque, Lucia Galvao
    Tonhati, Humberto
    Cavallari Machado, Carlos Henrique
    [J]. REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, 2008, 37 (09): : 1584 - 1594
  • [38] Estimation of genetic parameters for test-day milk yield in first calving buffaloes
    Hurtado-Lugo, Naudin A.
    de Sousa, Severino C.
    Aspilcueta, Rusbel R.
    Gutierrez, Swammy Y.
    Ceron-Munoz, Mario F.
    Tonhati, Humberto
    [J]. REVISTA COLOMBIANA DE CIENCIAS PECUARIAS, 2013, 26 (03) : 177 - 185
  • [39] Estimation of genetic parameters for milk yield and fat and protein contents of milk from Murciano-Granadina goats
    Analla, M
    JimenezGamero, I
    MunozSerrano, A
    Serradilla, JM
    Falagan, A
    [J]. JOURNAL OF DAIRY SCIENCE, 1996, 79 (10) : 1895 - 1898
  • [40] Estimation of genetic parameters for Holstein cows milk production by random regression
    Dorneles, C. K. P.
    Cobuci, J. A.
    Rorato, P. R. N.
    Weber, T.
    Lopes, J. S.
    Oliveira, H. N.
    [J]. ARQUIVO BRASILEIRO DE MEDICINA VETERINARIA E ZOOTECNIA, 2009, 61 (02) : 407 - 412