Super-rogue waves in simulations based on weakly nonlinear and fully nonlinear hydrodynamic equations

被引:71
|
作者
Slunyaev, A. [1 ,2 ]
Pelinovsky, E. [1 ,2 ,3 ]
Sergeeva, A. [1 ,2 ]
Chabchoub, A. [4 ,5 ]
Hoffmann, N. [5 ,6 ]
Onorato, M. [7 ,8 ]
Akhmediev, N. [9 ]
机构
[1] Inst Appl Phys, Nizhnii Novgorod, Russia
[2] Nizhnii Novgorod State Tech Univ, Nizhnii Novgorod, Russia
[3] Johannes Kepler Univ Linz, A-4040 Linz, Austria
[4] Swinburne Univ Technol, Ctr Ocean Engn Sci & Technol, Hawthorn, Vic 3122, Australia
[5] Univ London Imperial Coll Sci Technol & Med, Dept Mech Engn, London SW7 2AZ, England
[6] Hamburg Univ Technol, Dynam Grp, D-21073 Hamburg, Germany
[7] Univ Turin, Dipartimento Fis, I-10125 Turin, Italy
[8] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy
[9] Australian Natl Univ, Res Sch Phys & Engn, Opt Sci Grp, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会; 奥地利科学基金会;
关键词
SCHRODINGER-EQUATION;
D O I
10.1103/PhysRevE.88.012909
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The rogue wave solutions (rational multibreathers) of the nonlinear Schrodinger equation (NLS) are tested in numerical simulations of weakly nonlinear and fully nonlinear hydrodynamic equations. Only the lowest order solutions from 1 to 5 are considered. A higher accuracy of wave propagation in space is reached using the modified NLS equation, also known as the Dysthe equation. This numerical modeling allowed us to directly compare simulations with recent results of laboratory measurements in Chabchoub et al. [Phys. Rev. E 86, 056601 (2012)]. In order to achieve even higher physical accuracy, we employed fully nonlinear simulations of potential Euler equations. These simulations provided us with basic characteristics of long time evolution of rational solutions of the NLS equation in the case of near-breaking conditions. The analytic NLS solutions are found to describe the actual wave dynamics of steep waves reasonably well.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Nonlinear hydrodynamic Langmuir waves in fully degenerate relativistic plasma
    Haas, F.
    Kourakis, I.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (04)
  • [22] Elliptic-rogue waves and modulational instability in nonlinear soliton equations
    Ling, Liming
    Sun, Xuan
    PHYSICAL REVIEW E, 2024, 109 (06)
  • [23] The Dynamics and Evolution of Poles and Rogue Waves for Nonlinear Schrdinger Equations
    趙天樂
    柳天陽
    陳曉寧
    周國榮
    Communications in Theoretical Physics, 2017, 68 (09) : 290 - 294
  • [24] Vector rogue waves in the mixed coupled nonlinear Schrödinger equations
    Min Li
    Huan Liang
    Tao Xu
    Changjing Liu
    The European Physical Journal Plus, 131
  • [25] Breathers and rogue waves: Demonstration with coupled nonlinear Schrodinger family of equations
    Priya, N. Vishnu
    Senthilvelan, M.
    Lakshmanan, M.
    PRAMANA-JOURNAL OF PHYSICS, 2015, 84 (03): : 339 - 352
  • [26] Talbot carpets by rogue waves of extended nonlinear Schrödinger equations
    Stanko N. Nikolić
    Omar A. Ashour
    Najdan B. Aleksić
    Yiqi Zhang
    Milivoj R. Belić
    Siu A. Chin
    Nonlinear Dynamics, 2019, 97 : 1215 - 1225
  • [27] Solutions of the Vector Nonlinear Schrodinger Equations: Evidence for Deterministic Rogue Waves
    Baronio, Fabio
    Degasperis, Antonio
    Conforti, Matteo
    Wabnitz, Stefan
    PHYSICAL REVIEW LETTERS, 2012, 109 (04)
  • [28] Numerical generation and investigation of rogue waves for discrete nonlinear Schrodinger equations
    Gupta, Mishu
    Malhotra, Shivani
    Gupta, Rama
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2023, 32 (03)
  • [29] Rogue waves in the (2+1)-dimensional nonlinear Schrodinger equations
    Liu, Changfu
    Wang, Zeping
    Dai, Zhengde
    Chen, Longwei
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2015, 25 (03) : 656 - 664
  • [30] Asymptotic equations for weakly nonlinear elastic waves in a cubic crystal
    Domanski, W
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOL 1, 1999, 129 : 233 - 241