Super-rogue waves in simulations based on weakly nonlinear and fully nonlinear hydrodynamic equations

被引:71
|
作者
Slunyaev, A. [1 ,2 ]
Pelinovsky, E. [1 ,2 ,3 ]
Sergeeva, A. [1 ,2 ]
Chabchoub, A. [4 ,5 ]
Hoffmann, N. [5 ,6 ]
Onorato, M. [7 ,8 ]
Akhmediev, N. [9 ]
机构
[1] Inst Appl Phys, Nizhnii Novgorod, Russia
[2] Nizhnii Novgorod State Tech Univ, Nizhnii Novgorod, Russia
[3] Johannes Kepler Univ Linz, A-4040 Linz, Austria
[4] Swinburne Univ Technol, Ctr Ocean Engn Sci & Technol, Hawthorn, Vic 3122, Australia
[5] Univ London Imperial Coll Sci Technol & Med, Dept Mech Engn, London SW7 2AZ, England
[6] Hamburg Univ Technol, Dynam Grp, D-21073 Hamburg, Germany
[7] Univ Turin, Dipartimento Fis, I-10125 Turin, Italy
[8] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy
[9] Australian Natl Univ, Res Sch Phys & Engn, Opt Sci Grp, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会; 奥地利科学基金会;
关键词
SCHRODINGER-EQUATION;
D O I
10.1103/PhysRevE.88.012909
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The rogue wave solutions (rational multibreathers) of the nonlinear Schrodinger equation (NLS) are tested in numerical simulations of weakly nonlinear and fully nonlinear hydrodynamic equations. Only the lowest order solutions from 1 to 5 are considered. A higher accuracy of wave propagation in space is reached using the modified NLS equation, also known as the Dysthe equation. This numerical modeling allowed us to directly compare simulations with recent results of laboratory measurements in Chabchoub et al. [Phys. Rev. E 86, 056601 (2012)]. In order to achieve even higher physical accuracy, we employed fully nonlinear simulations of potential Euler equations. These simulations provided us with basic characteristics of long time evolution of rational solutions of the NLS equation in the case of near-breaking conditions. The analytic NLS solutions are found to describe the actual wave dynamics of steep waves reasonably well.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Numerical study on the generation and evolution of the super-rogue waves
    Yang, Jianmin
    Lu, Wenyue
    JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2016, 1 (01) : 1 - 10
  • [2] Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves
    Eldeberky, Y
    Madsen, PA
    COASTAL ENGINEERING, 1999, 38 (01) : 1 - 24
  • [3] Rogue Waves of the Vector Nonlinear Schrodinger Equations
    Baronio, F.
    Conforti, M.
    Wabnitz, S.
    Degasperis, A.
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE AND INTERNATIONAL QUANTUM ELECTRONICS CONFERENCE (CLEO EUROPE/IQEC), 2013,
  • [4] ON THE SO CALLED ROGUE WAVES IN NONLINEAR SCHRODINGER EQUATIONS
    Li, Y. Charles
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [5] Rogue Waves in the Generalized Derivative Nonlinear Schrodinger Equations
    Yang, Bo
    Chen, Junchao
    Yang, Jianke
    JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (06) : 3027 - 3056
  • [6] On the Amplitude Equations for Weakly Nonlinear Surface Waves
    Sylvie Benzoni-Gavage
    Jean-François Coulombel
    Archive for Rational Mechanics and Analysis, 2012, 205 : 871 - 925
  • [7] On the Amplitude Equations for Weakly Nonlinear Surface Waves
    Benzoni-Gavage, Sylvie
    Coulombel, Jean-Francois
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (03) : 871 - 925
  • [8] A fully dispersive weakly nonlinear model for water waves
    Nadaoka, K
    Beji, S
    Nakagawa, Y
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1957): : 303 - 318
  • [9] Prediction and manipulation of hydrodynamic rogue waves via nonlinear spectral engineering
    Tikan, Alexey
    Bonnefoy, Felicien
    Roberti, Giacomo
    El, Gennady
    Tovbis, Alexander
    Ducrozet, Guillaume
    Cazaubiel, Annette
    Prabhudesai, Gaurav
    Michel, Guillaume
    Copie, Francois
    Falcon, Eric
    Randoux, Stephane
    Suret, Pierre
    PHYSICAL REVIEW FLUIDS, 2022, 7 (05):
  • [10] Talbot carpets by rogue waves of extended nonlinear Schrodinger equations
    Nikolic, Stanko N.
    Ashour, Omar A.
    Aleksic, Najdan B.
    Zhang, Yiqi
    Belic, Milivoj R.
    Chin, Siu A.
    NONLINEAR DYNAMICS, 2019, 97 (02) : 1215 - 1225