Models of the neutral-fractional anomalous diffusion and their analysis

被引:10
|
作者
Luchko, Yuri [1 ]
机构
[1] Beuth Tech Univ Appl Sci Berlin, Dept Math Phys & Chem, D-13353 Berlin, Germany
关键词
Caputo fractional derivative; Riesz fractional derivative; continuous time random walk; neutral-fractional diffusion equation; fundamental solution; VARIABLE-ORDER;
D O I
10.1063/1.4765552
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Anomalous diffusion can be roughly characterized by the property that the diffusive particles do not follow the Gaussian statistics. When the mean squared displacement of the particles behaves in time like a power function, time- and/or space-fractional derivatives were shown to be useful in modeling of such diffusion processes. In this paper, a special class of anomalous diffusion processes, the so called neutral-fractional diffusion, is considered. The starting point is a stochastic formulation of the model in terms of the continuous time random walk processes. The neutral-fractional diffusion equation in form of a partial differential equation with the fractional derivatives of the same order both in time and in space is then derived from the master equation for a special choice of the probability density functions. An explicit form of the fundamental solution of the Cauchy problem for the neutral-fractional diffusion equation is presented. Its properties are studied and illustrated by plots.
引用
收藏
页码:626 / 632
页数:7
相关论文
共 50 条
  • [21] Fractional nonlinear diffusion equation, solutions and anomalous diffusion
    Silva, A. T.
    Lenzi, E. K.
    Evangelista, L. R.
    Lenzi, M. K.
    da Silva, L. R.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 375 (01) : 65 - 71
  • [22] Diffusion in a heterogeneous system, fractional dynamics and anomalous diffusion
    E. K. Lenzi
    M. K. Lenzi
    R. S. Zola
    The European Physical Journal Plus, 134
  • [23] Diffusion in a heterogeneous system, fractional dynamics and anomalous diffusion
    Lenzi, E. K.
    Lenzi, M. K.
    Zola, R. S.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (10):
  • [24] Anomalous diffusion and fractional advection-diffusion equation
    Chang, FX
    Chen, J
    Huang, W
    ACTA PHYSICA SINICA, 2005, 54 (03) : 1113 - 1117
  • [25] Characterizing time dependent anomalous diffusion process: A survey on fractional derivative and nonlinear models
    Wei, Song
    Chen, Wen
    Hon, Y. C.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 462 : 1244 - 1251
  • [26] Anomalous diffusion in neutral evolution of model proteins
    Nelson, Erik D.
    Grishin, Nick V.
    PHYSICAL REVIEW E, 2015, 91 (06):
  • [27] Iterative Solution of Fractional Diffusion Equation Modelling Anomalous Diffusion
    Elsaid, A.
    Shamseldeen, S.
    Madkour, S.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2016, 11 (02): : 815 - 827
  • [28] Fractional diffusion equation approach to the anomalous diffusion on fractal lattices
    Huh, D
    Lee, J
    Lee, S
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2005, 26 (11): : 1723 - 1727
  • [29] Fractional Cauchy Problem with Applications to Anomalous Diffusion
    Popescu, E.
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2008, 2010, 15 : 983 - 989
  • [30] Fractional phenomenology of cosmic ray anomalous diffusion
    Uchaikin, V. V.
    PHYSICS-USPEKHI, 2013, 56 (11) : 1074 - 1119