USING GOING-UP TO CHARACTERIZE GOING-DOWN DOMAINS

被引:0
|
作者
Dobbs, David E. [1 ]
Hetzel, Andrew J. [2 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Tennessee Technol Univ, Dept Math, Cookeville, TN 38505 USA
来源
HOUSTON JOURNAL OF MATHEMATICS | 2012年 / 38卷 / 01期
关键词
Going-up; integral domain; going-down domain; maximal ideal; prime ideal; absolutely injective domain; Krull dimension; Prufer domain; integrality; COMMUTATIVE RINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A (commutative integral) domain R is called an AGU-domain if R subset of T satisfies the going-up property whenever T is an algebraic extension domain of R such that the natural map Spec(T) -> Spec(R) sends the maximal spectrum Max(T) onto Max(R). Any domain of (Krull) dimension 1 is an AGU-domain, as is any absolutely injective (ai-) domain. A quasilocal domain is an AGU-domain if and only if it is a going-down domain. A partial generalization is given for rings with nontrivial zero-divisors. An example is given of a two-dimensional Prufer (hence going-down) domain with exactly two maximal ideals which is not an AGU-domain.
引用
收藏
页码:17 / 28
页数:12
相关论文
共 50 条
  • [41] On locally divided rings and going-down rings
    Badawi, A
    Dobbs, DE
    [J]. COMMUNICATIONS IN ALGEBRA, 2001, 29 (07) : 2805 - 2825
  • [42] Universally catenarian and going-down pairs of rings
    Ahmed Ayache
    Mabrouk Ben Nasr
    Othman Echi
    Noômen Jarboui
    [J]. Mathematische Zeitschrift, 2001, 238 : 695 - 731
  • [43] Universally catenarian and going-down pairs of rings
    Ayache, A
    Ben Nasr, M
    Echi, O
    Jarboui, N
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2001, 238 (04) : 695 - 731
  • [44] ON UNIVERSALLY GOING-DOWN UNDERRINGS .2.
    DOBBS, DE
    [J]. ARCHIV DER MATHEMATIK, 1990, 55 (02) : 135 - 138
  • [45] Generalized going-up homomorphisms of commutative rings
    Hetzel, AJ
    [J]. COMMUTATIVE RING THEORY AND APPLICATIONS, 2003, 231 : 255 - 265
  • [46] Going-down results for Ci-fields
    Bevelacqua, AJ
    Motley, MJ
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2006, 49 (01): : 11 - 20
  • [47] A UNIVERSALLY EFFECTIVE GOING-DOWN THEOREM AND AN APPLICATION
    SEYDI, H
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 270 (13): : 801 - &
  • [48] Going-down rings with zero-divisors
    Dobbs, DE
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 1997, 23 (01): : 1 - 12
  • [49] Generalized going-down homomorphisms of commutative rings
    Dobbs, DE
    Fontana, M
    Picavet, G
    [J]. COMMUTATIVE RING THEORY AND APPLICATIONS, 2003, 231 : 143 - 163
  • [50] Lifting up a tree of prime ideals to a going-up extension
    Kang, BG
    Oh, DY
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2003, 182 (2-3) : 239 - 252