USING GOING-UP TO CHARACTERIZE GOING-DOWN DOMAINS

被引:0
|
作者
Dobbs, David E. [1 ]
Hetzel, Andrew J. [2 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Tennessee Technol Univ, Dept Math, Cookeville, TN 38505 USA
来源
HOUSTON JOURNAL OF MATHEMATICS | 2012年 / 38卷 / 01期
关键词
Going-up; integral domain; going-down domain; maximal ideal; prime ideal; absolutely injective domain; Krull dimension; Prufer domain; integrality; COMMUTATIVE RINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A (commutative integral) domain R is called an AGU-domain if R subset of T satisfies the going-up property whenever T is an algebraic extension domain of R such that the natural map Spec(T) -> Spec(R) sends the maximal spectrum Max(T) onto Max(R). Any domain of (Krull) dimension 1 is an AGU-domain, as is any absolutely injective (ai-) domain. A quasilocal domain is an AGU-domain if and only if it is a going-down domain. A partial generalization is given for rings with nontrivial zero-divisors. An example is given of a two-dimensional Prufer (hence going-down) domain with exactly two maximal ideals which is not an AGU-domain.
引用
收藏
页码:17 / 28
页数:12
相关论文
共 50 条