Prediction of cement degree of hydration using artificial neural networks

被引:0
|
作者
Basma, AA [1 ]
Barakat, SA
Al-Oraimi, S
机构
[1] Sultan Qaboos Univ, Muscat, Oman
[2] Jordan Univ Sci & Technol, Irbid, Jordan
关键词
curing; hydration; models;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presents the development of a computer model for the prediction of cement degree of hydration ex. The model is established by incorporating large experimental data sets using the neural networks (NNs) technology. NNs are computational paradigms, primarily based of the structural formation and the knowledge processing faculties of the human brain. Initially, the degree of hydration was estimated in the laboratory by preparing portland cement paste with the water-cement ratio (w/c) ranging from 0.2 to 0.6 curing times from 0.25 to 90 days and subjected to curing temperatures from 3 to 43 C (37 to 109 F). A total of 390 specimens were tested, thus producing 195 data points divided into five sets. The networks were trained using data in Set 1, 2, and 3. Once the NNs have been deemed fully trained, verification of the performance is then carried out using Set 1 and 5 of the experimental data, which were not included in the training phase. The results indicated that the NNs are very efficient in predicting concrete degree of hydration with great accuracy using minimal processing of data.
引用
收藏
页码:167 / 172
页数:6
相关论文
共 50 条
  • [31] Prediction of Solar Radiation Using Artificial Neural Networks
    Faceira, Joao
    Afonso, Paulo
    Salgado, Paulo
    CONTROLO'2014 - PROCEEDINGS OF THE 11TH PORTUGUESE CONFERENCE ON AUTOMATIC CONTROL, 2015, 321 : 397 - 406
  • [32] Prediction of hydrocyclone performance using artificial neural networks
    Karimi, M.
    Dehghani, A.
    Nezamalhosseini, A.
    Talebi, S.H.
    Journal of the Southern African Institute of Mining and Metallurgy, 2010, 110 (05) : 207 - 212
  • [33] Using artificial neural networks in prediction, runoff and sediment
    Sichani, SA
    Tudeshki, ARS
    WATER-SAVING AGRICULTURE AND SUSTAINABLE USE OF WATER AND LAND RESOURCES, VOLS 1 AND 2, PROCEEDINGS, 2004, : 821 - 832
  • [34] On Prediction of Friction Coefficient Using Artificial Neural Networks
    Deiab, Ibrahim M.
    Shammari, Awadh T. A.
    2009 6TH INTERNATIONAL SYMPOSIUM ON MECHATRONICS AND ITS APPLICATIONS (ISMA), 2009, : 1 - +
  • [35] Dewpoint temperature prediction using artificial neural networks
    Shank, D. B.
    Hoogenboom, G.
    McClendon, R. W.
    JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2008, 47 (06) : 1757 - 1769
  • [36] Prediction of properties of rubber by using artificial neural networks
    Vijayabaskar, V.
    Gupta, Rakesh
    Chakrabarti, P.P.
    Bhowmick, Anil K.
    Journal of Applied Polymer Science, 2006, 100 (03): : 2227 - 2237
  • [37] Prediction of corneal permeability using artificial neural networks
    Agatonovic-Kustrin, S
    Evans, A
    Alany, RG
    PHARMAZIE, 2003, 58 (10): : 725 - 729
  • [38] Prediction of slump in concrete using artificial neural networks
    Agrawal, V.
    Sharma, A.
    World Academy of Science, Engineering and Technology, 2010, 70 : 25 - 32
  • [39] Daily Discharge Prediction Using Artificial Neural Networks
    Zhao Weiguo
    Wang Liying
    APPLIED MECHANICS AND MECHANICAL ENGINEERING, PTS 1-3, 2010, 29-32 : 2799 - 2803
  • [40] Prediction of groundwater drawdown using artificial neural networks
    Gholami, Vahid
    Sahour, Hossein
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (22) : 33544 - 33557