GEOMETRIC FOKKER-PLANCK EQUATIONS

被引:0
|
作者
Lebeau, Gilles [1 ]
机构
[1] Univ Nice Sophia Antipolis, Dept Math, F-06108 Nice 02, France
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the large deviation function and small time asymptotics near the diagonal for the heat equation associated to Geometric Fokker-Planck equations (GFK) on the cotangent bundle Sigma = T*X of a Riemannian smooth compact connected variety X.
引用
收藏
页码:469 / 530
页数:62
相关论文
共 50 条
  • [11] A Note on Fokker-Planck Equations and Graphons
    Coppini, Fabio
    JOURNAL OF STATISTICAL PHYSICS, 2022, 187 (02)
  • [12] FOKKER-PLANCK EQUATIONS FOR EIGENSTATE DISTRIBUTIONS
    LINDBLAD, G
    LETTERS IN MATHEMATICAL PHYSICS, 1992, 25 (02) : 161 - 174
  • [13] Stochastic nonlinear Fokker-Planck equations
    Coghi, Michele
    Gess, Benjamin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 187 : 259 - 278
  • [14] Thermodynamics and fractional Fokker-Planck equations
    Sokolov, IM
    PHYSICAL REVIEW E, 2001, 63 (05):
  • [15] Generalized Stochastic Fokker-Planck Equations
    Chavanis, Pierre-Henri
    ENTROPY, 2015, 17 (05) : 3205 - 3252
  • [16] Solution of nonlinear Fokker-Planck equations
    Drozdov, AN
    Morillo, M
    PHYSICAL REVIEW E, 1996, 54 (01): : 931 - 937
  • [17] Deformed multivariable fokker-planck equations
    Ho, Choon-Lin
    Sasaki, Ryu
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (07)
  • [18] Periodic solutions of Fokker-Planck equations
    Chen, Feng
    Han, Yuecai
    Li, Yong
    Yang, Xue
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (01) : 285 - 298
  • [19] Convergence to Equilibrium in Fokker-Planck Equations
    Ji, Min
    Shen, Zhongwei
    Yi, Yingfei
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2019, 31 (03) : 1591 - 1615
  • [20] DIFFERENTIAL EQUATIONS OF FOKKER-PLANCK TYPE
    KRATZEL, E
    MATHEMATISCHE NACHRICHTEN, 1967, 35 (3-4) : 137 - &