Conjugated Acetylenic Polymers Grafted Cuprous Oxide as an Efficient Z-Scheme Heterojunction for Photoelectrochemical Water Reduction

被引:51
|
作者
Sun, Hanjun [1 ,2 ]
Dong, Changlin [1 ,2 ,3 ]
Liu, Qinglei [3 ]
Yuan, Yang [3 ]
Zhang, Tao [1 ,2 ,4 ]
Zhang, Jian [5 ]
Hou, Yang [6 ]
Zhang, Di [3 ]
Feng, Xinliang [1 ,2 ]
机构
[1] Tech Univ Dresden, Ctr Adv Elect Dresden Cfaed, Mommsenstr 4, D-01062 Dresden, Germany
[2] Tech Univ Dresden, Fac Chem & Food Chem, Mommsenstr 4, D-01062 Dresden, Germany
[3] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[4] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Key Lab Marine Mat & Related Technol, Ningbo 315201, Peoples R China
[5] Northwestern Polytech Univ, Dept Appl Chem, Sch Appl & Nat Sci, Xian 710129, Peoples R China
[6] Zhejiang Univ, Coll Chem & Biol Engn, Key Lab Biol Engn, Minist Educ, Hangzhou 310027, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
conjugated polymers; Glaser polycondensation; hydrogen evolution; photocathodes; Z-scheme heterojunctions; PHOTOCATHODE; LAYER; GRAPHDIYNE; JUNCTIONS; CU2O;
D O I
10.1002/adma.202002486
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As attractive materials for photoeletrochemical hydrogen evolution reaction (PEC HER), conjugated polymers (e.g., conjugated acetylenic polymers [CAPs]) still show poor PEC HER performance due to the associated serious recombination of photogenerated electrons and holes. Herein, taking advantage of the in situ conversion of nanocopper into Cu2O on copper cellulose paper during catalyzing of the Glaser coupling reaction, a general strategy for the construction of a CAPs/Cu2O Z-scheme heterojunction for PEC water reduction is demonstrated. The as-fabricated poly(2,5-diethynylthieno[3,2-b]thiophene) (pDET)/Cu2O Z-scheme heterojunction exhibits a carrier separation efficiency of 16.1% at 0.3 V versus reversible hydrogen electrode (RHE), which is 6.7 and 1.4-times higher respectively than those for pDET and Cu2O under AM 1.5G irradiation (100 mW cm(-2)) in the 0.1mNa(2)SO(4)aqueous solution. Consequently, the photocurrent of the pDET/Cu2O Z-scheme heterojunction reaches approximate to 520 mu A cm(-2)at 0.3 V versus RHE, which is much higher than pDET (approximate to 80 mu A cm(-2)), Cu2O (approximate to 100 mu A cm(-2)), and the state-of-the-art cocatalyst-free organic or organic-semiconductor-based heterojunctions/homojunctions photocathodes (1-370 mu A cm(-2)). This work advances the design of polymer-based Z-scheme heterojunctions and high-performance organic photoelectrodes.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Defect-engineered plasmonic Z-scheme heterostructures for superior photoelectrochemical water oxidation
    Li, Shuoren
    Ge, Ping
    Hang, Tianxiang
    Zhou, Hui
    Guo, Feifei
    Wu, Yueyue
    Li, Chuanping
    APPLIED SURFACE SCIENCE, 2023, 610
  • [32] Bismuth oxyiodide-based Bifunctional Z-scheme Heterostructures for Photoelectrochemical Water Splitting
    Shabbir, Syeda Ammara
    Naeem, Fatima
    Haris, Muhammad
    Ashiq, Muhammad Gulbahar
    Younas, Muhammad
    Latif, Hamid
    Faiz, Hafsa
    Tamulevicius, Tomas
    Midveris, Klaudijus
    Tamulevicius, Sigitas
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2025,
  • [33] Z-scheme Bi2S3-carbon nitride heterojunction photoanode activated efficient photoelectrochemical aptasensing of oxytetracycline and insights into the mechanism
    Zhang, Hang
    Jiang, Huihui
    Yang, Peilin
    Liu, Qian
    You, Tianyan
    SENSORS AND ACTUATORS B-CHEMICAL, 2023, 382
  • [34] Z-scheme heterojunction through interface engineering for broad spectrum photocatalytic water splitting
    Xu, Shu
    Gong, Shuaiqi
    Jiang, Hua
    Shi, Penghui
    Fan, Jinchen
    Xu, QunJie
    Min, YuLin
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 267
  • [35] Direct Z-scheme GaSe/ZrS2 heterojunction for overall water splitting
    Ge, Chuanpeng
    Wang, Biyi
    Yang, Hongdong
    Feng, Qingyi
    Huang, Sizhao
    Zu, Xiaotao
    Li, Li
    Deng, Hongxiang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (36) : 13460 - 13469
  • [36] High-efficient separation of photoinduced carriers on double Z-scheme heterojunction for superior photocatalytic CO2 reduction
    Zhu, Linyu
    Li, Hong
    Xu, Quanlong
    Xiong, Dehua
    Xia, Pengfei
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 564 : 303 - 312
  • [37] Molecular modulation of interfaces in a Z-scheme van der Waals heterojunction for highly efficient photocatalytic CO2 reduction
    Ali, Sharafat
    Ali, Sajjad
    Khan, Imran
    Zahid, Muhammad
    Ismail, Pir Muhammad
    Ismail, Ahmed
    Zada, Amir
    Ullah, Rizwan
    Hayat, Salman
    Ali, Haider
    Kamal, Muhammad Rizwan
    Alibrahim, Khuloud A.
    Bououdina, Mohamed
    Bakhtiar, Syedul Hasnain
    Wu, Xiaoqiang
    Wang, Qingyuan
    Raziq, Fazal
    Qiao, Liang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 663 : 31 - 42
  • [38] Construction of a Novel Z-Scheme Heterojunction with Molecular Grafted Carbon Nitride Nanosheets and V2O5 for Highly Efficient Photocatalysis
    Liu, Bingqi
    Yin, Dongguang
    Zhao, Feifei
    Khaing, Kyu Kyu
    Chen, Tao
    Wu, Chenglong
    Deng, Linlin
    Li, Luqiu
    Huang, Kexian
    Zhang, Yong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (07): : 4193 - 4203
  • [39] Photoelectrochemical biosensing of leukemia gene based on CdS/AuNPs/FeOOH Z-scheme heterojunction and a facile reflective device
    Sun, Chenglong
    Liu, Luyao
    Guo, Chunrong
    Shen, Yuru
    Peng, Yueyi
    Xie, Qingji
    SENSORS AND ACTUATORS B-CHEMICAL, 2022, 362
  • [40] Cobalt oxide coupled with graphitic carbon nitride composite heterojunction for efficient Z-scheme photocatalytic environmental pollutants degradation performance
    Suganthi, Sanjeevamuthu
    Vignesh, Shanmugam
    Sundar, Jeyaperumal Kalyana
    Alqarni, Sondos Abdullah
    Pandiaraj, Saravanan
    Oh, Tae Hwan
    ENVIRONMENTAL RESEARCH, 2023, 235