A Characterization of von Neumann Neighbor Number-Conserving Cellular Automata

被引:0
|
作者
Tanimoto, Naonori [1 ]
Imai, Katsunobu [1 ]
机构
[1] Hiroshima Univ, Grad Sch Engn, Higashihiroshima 7398527, Japan
关键词
Cellular automata; number-conservation; logical universality; MODEL;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A number-conserving cellular automaton (NCCA) is a cellular automaton such that all states of cells are represented by integers and the total number of its configuration is conserved throughout its computing process. In this paper, we show necessary and sufficient conditions for a two-dimensional von Neumann neighbor CA with and without rotation-symmetry to be number-conserved. According to these conditions, the local function of a rotation-symmetric NCCA is represented by summation of two binary functions. Then we show a construction method based on the representation. As a result, we construct a smaller state logically universal NCCA with rotation-symmetry than the +/-45-degree reflection-symmetric one.
引用
收藏
页码:39 / 53
页数:15
相关论文
共 50 条
  • [41] NUMBER-CONSERVING SETS
    ELLIS, PJ
    JACKSON, AD
    OSNES, E
    NUCLEAR PHYSICS A, 1972, A196 (01) : 161 - &
  • [42] Universal Time-Symmetric Number-Conserving Cellular Automaton
    Maldonado, Diego
    Moreira, Andres
    Gajardo, Anahi
    CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS, AUTOMATA 2015, 2015, 9099 : 155 - 168
  • [43] Reversibility of number-conserving 1D cellular automata: Unlocking insights into the dynamics for larger state sets
    Wolnik, Barbara
    Dziemianczuk, Maciej
    Dzedzej, Adam
    De Baets, Bernard
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 429
  • [44] The Cryptographic Properties of Von Neumann Cellular Automata
    Escuadra Burrieza, J.
    Martin del Rey, A.
    Perez Iglesias, J. L.
    Rodriguez Sanchez, G.
    Queiruga Dios, A.
    de la Villa Cuenca, A.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2010, 3 (04): : 765 - 778
  • [45] Number conserving cellular automata II: dynamics
    Formenti, E
    Grange, A
    THEORETICAL COMPUTER SCIENCE, 2003, 304 (1-3) : 269 - 290
  • [46] A two-layer representation of four-state reversible number-conserving 2D cellular automata
    Dzedzej, Adam
    Wolnik, Barbara
    Dziemianczuk, Maciej
    Nenca, Anna
    Baetens, Jan M.
    De Baets, Bernard
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
  • [47] On irreversibility of von Neumann additive cellular automata on grids
    Soma, NY
    Melo, JP
    DISCRETE APPLIED MATHEMATICS, 2006, 154 (05) : 861 - 866
  • [48] INVERSION OF NUMBER-CONSERVING GAP EQUATIONS
    JENKINS, CA
    GREENBERG, NI
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (01): : 22 - 22
  • [49] Anisotropic hydrodynamics with number-conserving kernels
    Almaalol, Dekrayat
    Alqahtani, Mubarak
    Strickland, Michael
    PHYSICAL REVIEW C, 2019, 99 (01)
  • [50] NUMBER-CONSERVING APPROXIMATION TO SHELL MODEL
    GAMBHIR, YK
    RIMINI, A
    WEBER, T
    PHYSICAL REVIEW, 1969, 188 (04): : 1573 - +