Piecewise polynomials on polyhedral complexes

被引:12
|
作者
McDonald, Terry [2 ]
Schenck, Hal [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Midwestern State Univ, Dept Math, Wichita Falls, TX 76308 USA
基金
美国国家科学基金会;
关键词
Polyhedral spline; Dimension formula; Hilbert polynomial; BIVARIATE SPLINE SPACES; MULTIVARIATE SPLINES; SMOOTHNESS-R; DIMENSION; MODULES; CONJECTURE; SERIES;
D O I
10.1016/j.aam.2008.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a d-dimensional polyhedral complex P, the dimension of the space of piecewise polynomial functions (splines) on P of smoothness r and degree k is given, for k sufficiently large, by a polynomial f (P, r, k) of degree d. When d = 2 and P is simplicial, Alfeld and Schumaker give a formula for all three coefficients of f. However, in the polyhedral case, no formula is known. Using localization techniques and specialized dual graphs associated to codimension-2 linear spaces, we obtain the first three coefficients of f (P. r, k), giving a complete answer when d = 2. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:82 / 93
页数:12
相关论文
共 50 条
  • [41] Optimising cam motion using piecewise polynomials
    Mermelstein, SP
    Acar, M
    ENGINEERING WITH COMPUTERS, 2004, 19 (04) : 241 - 254
  • [42] PERCENTILE SMOOTHING USING PIECEWISE POLYNOMIALS, WITH COVARIATES
    GOLDSTEIN, H
    PAN, HQ
    BIOMETRICS, 1992, 48 (04) : 1057 - 1068
  • [43] Perturbations in polyhedral partitions and the related fragility of piecewise affine control
    Koduri, Rajesh
    Olaru, Sorin
    Rodriguez-Ayerbe, Pedro
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2018, 61 (04): : 439 - 452
  • [44] Remarkable Haar spaces of multivariate piecewise polynomials
    Giampietro Allasia
    Numerical Algorithms, 2018, 78 : 661 - 672
  • [45] Piecewise constructions of inverses of some permutation polynomials
    Zheng, Yanbin
    Yuan, Pingzhi
    Pei, Dingyi
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 36 : 151 - 169
  • [46] Constructing permutation polynomials from piecewise permutations
    Cao, Xiwang
    Hu, Lei
    Zha, Zhengbang
    FINITE FIELDS AND THEIR APPLICATIONS, 2014, 26 : 162 - 174
  • [47] On 3-monotone approximation by piecewise polynomials
    Leviatan, D
    Prymak, A
    JOURNAL OF APPROXIMATION THEORY, 2005, 133 (02) : 147 - 172
  • [48] Optimising cam motion using piecewise polynomials
    S. P. Mermelstein
    M. Acar
    Engineering with Computers, 2004, 19 : 241 - 254
  • [49] BOUNDS ON THE DIMENSION OF SPACES OF MULTIVARIATE PIECEWISE POLYNOMIALS
    SCHUMAKER, LL
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1984, 14 (01) : 251 - 264
  • [50] Global error bounds for piecewise convex polynomials
    Li, Guoyin
    MATHEMATICAL PROGRAMMING, 2013, 137 (1-2) : 37 - 64