Comparison of SVM-fuzzy modelling techniques for system identification

被引:0
|
作者
García-Gamboa, A [1 ]
González-Mendoza, M [1 ]
Ibarra-Orozco, R [1 ]
Hernández-Gress, N [1 ]
Mora-Vargas, J [1 ]
机构
[1] Intelligent Syst Res Grp, Mexico City 52926, DF, Mexico
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, the importance of the construction of fuzzy models from measured data has increased. Nevertheless, the complexity of real-life process is characterized by nonlinear and non-stationary dynamics, leaving so much classical identification techniques out of choice. In this paper, we present a comparison of Support Vector Machines (SVMs) for density estimation (SVDE) and for regression (SVR), versus traditional techniques as Fuzzy C-means and Gustafson-Kessel (for clustering) and Least Mean Squares (for regression), in order to find the parameters of Takagi-Sugeno (TS) fuzzy models. We show the properties of the identification procedure in a waste-water treatment database.
引用
收藏
页码:494 / 503
页数:10
相关论文
共 50 条
  • [21] A comparison of techniques for modelling robot dynamics
    Dolinsky, JU
    Colquhoun, G
    Jenkinson, D
    [J]. ADVANCES IN MANUFACTURING TECHNOLOGY XII, 1998, : 343 - 348
  • [22] Fuzzy modelling and identification of multilinear dynamical systems
    diSciascio, F
    Carelli, R
    [J]. FUZZ-IEEE '96 - PROCEEDINGS OF THE FIFTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 1996, : 848 - 854
  • [23] Comparison of Parameter Identification Techniques
    Eder, Rafael
    Zehetner, Christian
    Kunze, Wolfgang
    [J]. 2016 3RD INTERNATIONAL CONFERENCE ON MANUFACTURING AND INDUSTRIAL TECHNOLOGIES, 2016, 70
  • [24] COMPARISON OF HYBRID IDENTIFICATION TECHNIQUES
    YOXTHEIM.TL
    BRANDS, FW
    [J]. IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1974, PA93 (01): : 8 - 8
  • [25] A Comparison of ANFIS, MLP and SVM in Identification of Chemical Processes
    Efe, Mehmet Oender
    [J]. 2009 IEEE CONTROL APPLICATIONS CCA & INTELLIGENT CONTROL (ISIC), VOLS 1-3, 2009, : 689 - 694
  • [26] Systematic approach to nonlinear modelling using fuzzy techniques
    Matko, D
    [J]. SYSTEMATIC ORGANISATION OF INFORMATION IN FUZZY SYSTEMS, 2003, 184 : 307 - 320
  • [27] System modelling using fuzzy numbers
    Husek, P
    Pytelková, R
    [J]. FUZZY SETS AND SYSTEMS - IFSA 2003, PROCEEDINGS, 2003, 2715 : 492 - 499
  • [28] Fuzzy uncertainty analysis in system modelling
    Kumar, V
    Schuhmacher, M
    [J]. EUROPEAN SYMPOSIUM ON COMPUTER-AIDED PROCESS ENGINEERING-15, 20A AND 20B, 2005, 20a-20b : 391 - 396
  • [29] Multiscale fuzzy system identification
    Nounou, MN
    Nounou, HN
    [J]. JOURNAL OF PROCESS CONTROL, 2005, 15 (07) : 763 - 770
  • [30] A Fuzzy Inference System for the Identification
    Rubio, J. de J.
    Ortigoza, R. S.
    Avila, F. J.
    Melendez, A.
    Stein, J. M.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2015, 13 (09) : 2823 - 2829