Comparison of SVM-fuzzy modelling techniques for system identification

被引:0
|
作者
García-Gamboa, A [1 ]
González-Mendoza, M [1 ]
Ibarra-Orozco, R [1 ]
Hernández-Gress, N [1 ]
Mora-Vargas, J [1 ]
机构
[1] Intelligent Syst Res Grp, Mexico City 52926, DF, Mexico
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, the importance of the construction of fuzzy models from measured data has increased. Nevertheless, the complexity of real-life process is characterized by nonlinear and non-stationary dynamics, leaving so much classical identification techniques out of choice. In this paper, we present a comparison of Support Vector Machines (SVMs) for density estimation (SVDE) and for regression (SVR), versus traditional techniques as Fuzzy C-means and Gustafson-Kessel (for clustering) and Least Mean Squares (for regression), in order to find the parameters of Takagi-Sugeno (TS) fuzzy models. We show the properties of the identification procedure in a waste-water treatment database.
引用
收藏
页码:494 / 503
页数:10
相关论文
共 50 条
  • [1] An adaptive inverse control method based on SVM-fuzzy rules acquisition system for pulsed GTAW process
    Huang, Xixia
    Gu, Wei
    Shi, Fanhuai
    Chen, Shanben
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2009, 44 (7-8): : 686 - 694
  • [2] A comparison of fuzzy modelling techniques for load forecasting
    Campbell, P. R. J.
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-4, 2007, : 298 - 302
  • [3] Wind turbine simulator fault diagnosis via fuzzy modelling and identification techniques
    Simani, Silvio
    Farsoni, Saverio
    Castaldi, Paolo
    [J]. SUSTAINABLE ENERGY GRIDS & NETWORKS, 2015, 1 : 45 - 52
  • [4] Grouting Stratum Identification Based on Fuzzy SVM
    Ll Feng-ling
    Liu Hui
    Hou Zhi-xiang
    [J]. 7TH INTERNATIONAL CONFERENCE ON SYSTEM SIMULATION AND SCIENTIFIC COMPUTING ASIA SIMULATION CONFERENCE 2008, VOLS 1-3, 2008, : 1168 - 1172
  • [5] Automatic Fingerprint Identification System using fuzzy Neural Techniques
    Mohamed, SM
    Nyongesa, HO
    Siddiqi, J
    [J]. IC-AI'2000: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 1-III, 2000, : 859 - 865
  • [6] Impulse response constrained LS-SVM modelling for MIMO Hammerstein system identification
    Castro-Garcia, Ricardo
    Agudelo, Oscar Mauricio
    Suykens, Johan A. K.
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2019, 92 (04) : 908 - 925
  • [7] Fuzzy and neuro-fuzzy techniques for modelling and control
    Lee, S. H.
    Howlett, R. J.
    Walters, S. D.
    [J]. KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 1, PROCEEDINGS, 2006, 4251 : 1206 - 1215
  • [8] Comparison of experimental identification techniques for a nonlinear SDOF system
    Krauss, RW
    Nayfeh, AH
    [J]. IMAC - PROCEEDINGS OF THE 17TH INTERNATIONAL MODAL ANALYSIS CONFERENCE, VOLS I AND II, 1999, 3727 : 1182 - 1187
  • [9] Comparison of Subspace-based System Identification Techniques
    Kim, Young-Man
    [J]. 2013 13TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2013), 2013, : 741 - 746
  • [10] A COMPARISON OF 3 CORRELATION TECHNIQUES FOR SYSTEM-IDENTIFICATION
    KUBRUSLY, CS
    LUCENA, AP
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1983, 14 (01) : 31 - 57