Meshless Local Petrov-Galerkin Method for 3D Steady-State Heat Conduction Problems

被引:8
|
作者
Mahmoodabadi, M. J. [1 ]
Maafi, R. Abedzadeh [2 ]
Bagheri, A. [1 ]
Baradaran, G. H. [3 ]
机构
[1] Univ Guilan, Dept Mech Engn, Rasht, Iran
[2] Islamic Azad Univ, Takestan Branch, Dept Mech Engn, Takestan, Iran
[3] Shahid Bahonar Univ Kerman, Dept Mech Engn, Kerman, Iran
关键词
MLPG METHOD; VIBRATION ANALYSES; TIP;
D O I
10.1155/2011/251546
中图分类号
O414.1 [热力学];
学科分类号
摘要
The Meshless Local Petrov-Galerkin (MLPG) method is applied for solving the three-dimensional steady state heat conduction problems. This method is a truly meshless approach; also neither the nodal connectivity nor the background mesh is required for solving the initial boundary-value problems. The penalty method is adopted to enforce the essential boundary conditions. The moving least squares (MLS) approximation is used for interpolation schemes and the Heviside step function is chosen for representing the test function. The numerical results are compared with the exact solutions of the problem and Finite Difference Method (FDM). This comparison illustrates the accuracy as well as the capability of this method.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Error assessment in the meshless local Petrov-Galerkin method
    Pannachet, T
    Barry, W
    Askes, H
    [J]. COMPUTATIONAL MECHANICS, VOLS 1 AND 2, PROCEEDINGS: NEW FRONTIERS FOR THE NEW MILLENNIUM, 2001, : 989 - 994
  • [32] Meshless local Petrov-Galerkin method in anisotropic elasticity
    Sladek, J
    Sladek, V
    Atluri, SN
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2004, 6 (05): : 477 - 489
  • [33] Meshless local Petrov-Galerkin method for the laminated plates
    [J]. Xiong, Y. (yuanbox@msn.com), 2005, Beijing University of Aeronautics and Astronautics (BUAA) (22):
  • [34] The application of the meshless local Petrov-Galerkin method for the analysis of heat conduction and residual stress due to welding
    Ali Moarrefzadeh
    Shahram Shahrooi
    Mahdi Jalali Azizpour
    [J]. The International Journal of Advanced Manufacturing Technology, 2019, 104 : 723 - 742
  • [35] CUDA Approach for Meshless Local Petrov-Galerkin Method
    Correa, Bruno C.
    Mesquita, Renato C.
    Amorim, Lucas P.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (03)
  • [36] A meshless local Petrov-Galerkin scaled boundary method
    A. J. Deeks
    C. E. Augarde
    [J]. Computational Mechanics, 2005, 36 : 159 - 170
  • [37] Meshless local Petrov-Galerkin method for plane piezoelectricity
    Sladek, J.
    Sladek, V.
    Zhang, Ch.
    Garcia-Sanche, F.
    Wuensche, M.
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2006, 4 (02): : 109 - 117
  • [38] A meshless local Petrov-Galerkin method for fluid dynamics and heat transfer applications
    Arefmanesh, A
    Najafi, M
    Abdi, H
    [J]. JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2005, 127 (04): : 647 - 655
  • [39] Application of Meshless local Petrov-Galerkin approach for steady state groundwater flow modeling
    Mohtashami, Ali
    Monfared, Seyed Arman Hashemi
    Azizyan, Gholamreza
    Akbarpour, Abolfazl
    [J]. WATER SUPPLY, 2022, 22 (04) : 3824 - 3841
  • [40] Meshless local Petrov-Galerkin (MLPG) method for convection-diffusion problems
    Lin, H
    Atluri, SN
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2000, 1 (02): : 45 - 60