Electrically controlling single-spin qubits in a continuous microwave field

被引:118
|
作者
Laucht, Arne [1 ]
Muhonen, Juha T. [1 ]
Mohiyaddin, Fahd A. [1 ]
Kalra, Rachpon [1 ]
Dehollain, Juan P. [1 ]
Freer, Solomon [1 ]
Hudson, Fay E. [1 ]
Veldhorst, Menno [1 ]
Rahman, Rajib [2 ]
Klimeck, Gerhard [2 ]
Itoh, Kohei M. [3 ]
Jamieson, David N. [4 ]
McCallum, Jeffrey C. [4 ]
Dzurak, Andrew S. [1 ]
Morello, Andrea [1 ]
机构
[1] Univ New South Wales, Sch Elect Engn & Telecommun, Ctr Quantum Computat & Commun Technol, Sydney, NSW 2052, Australia
[2] Purdue Univ, Network Computat Nanotechnol, W Lafayette, IN 47907 USA
[3] Keio Univ, Sch Fundamental Sci & Technol, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
[4] Univ Melbourne, Sch Phys, Ctr Quantum Computat & Commun Technol, Melbourne, Vic 3010, Australia
来源
SCIENCE ADVANCES | 2015年 / 1卷 / 03期
基金
日本学术振兴会; 澳大利亚研究理事会; 美国国家科学基金会;
关键词
Coherence time - Electrostatic gates - Gate fidelity - Large scale quantum computers - Microwave field - Microwave magnetic field - Microwave sources - Quantum control;
D O I
10.1126/sciadv.1500022
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Large-scale quantum computers must be built upon quantum bits that are both highly coherent and locally controllable. We demonstrate the quantum control of the electron and the nuclear spin of a single P-31 atom in silicon, using a continuous microwave magnetic field together with nanoscale electrostatic gates. The qubits are tuned into resonance with the microwave field by a local change in electric field, which induces a Stark shift of the qubit energies. This method, known as A-gate control, preserves the excellent coherence times and gate fidelities of isolated spins, and can be extended to arbitrarily many qubits without requiring multiple microwave sources.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Single-spin asymmetries and transversity
    Ratcliffe, PG
    SPIN 2002, 2003, 675 : 176 - 185
  • [22] Single-spin implementation of a multiplexer
    Bhattacharyya, T. K.
    Neogy, A.
    Bhowmik, D.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2009, 41 (07): : 1184 - 1186
  • [23] Controlling Spin Qubits in Quantum Dots
    Engel, Hans-Andreas
    Kouwenhoven, L. P.
    Loss, Daniel
    Marcus, C. M.
    QUANTUM INFORMATION PROCESSING, 2004, 3 (1-5) : 115 - 132
  • [24] Controlling Spin Qubits in Quantum Dots
    Hans-Andreas Engel
    L. P. Kouwenhoven
    Daniel Loss
    C. M. Marcus
    Quantum Information Processing, 2004, 3 : 115 - 132
  • [25] Room-temperature coherent manipulation of single-spin qubits in silicon carbide with a high readout contrast
    Qiang Li
    Jun-Feng Wang
    Fei-Fei Yan
    Ji-Yang Zhou
    Han-Feng Wang
    He Liu
    Li-Ping Guo
    Xiong Zhou
    Adam Gali
    Zheng-Hao Liu
    Zu-Qing Wang
    Kai Sun
    Guo-Ping Guo
    Jian-Shun Tang
    Hao Li
    Li-Xing You
    Jin-Shi Xu
    Chuan-Feng Li
    Guang-Can Guo
    NationalScienceReview, 2022, 9 (05) : 89 - 98
  • [26] Parabolic Diamond Scanning Probes for Single-Spin Magnetic Field Imaging
    Hedrich, Natascha
    Rohner, Dominik
    Batzer, Marietta
    Maletinsky, Patrick
    Shields, Brendan J.
    PHYSICAL REVIEW APPLIED, 2020, 14 (06):
  • [27] Quark correlations and single-spin asymmetries
    Burkardt, M
    CONTINUOUS ADVANCES IN QCD 2004, PROCEEDINGS, 2004, : 64 - 73
  • [28] Single-Spin Magnetomechanics with Levitated Micromagnets
    Gieseler, J.
    Kabcenell, A.
    Rosenfeld, E.
    Schaefer, J. D.
    Safira, A.
    Schuetz, M. J. A.
    Gonzalez-Ballestero, C.
    Rusconi, C. C.
    Romero-Isart, O.
    Lukin, M. D.
    PHYSICAL REVIEW LETTERS, 2020, 124 (16)
  • [29] Quantum dynamics in single-spin measurement
    Mancini, S
    Vitali, D
    Moya-Cessa, H
    PHYSICAL REVIEW B, 2005, 71 (05)
  • [30] Single-spin azimuthal asymmetries at HERMES
    Bianchi, N
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2002, 28 (05) : 791 - 800