Electrically controlling single-spin qubits in a continuous microwave field

被引:118
|
作者
Laucht, Arne [1 ]
Muhonen, Juha T. [1 ]
Mohiyaddin, Fahd A. [1 ]
Kalra, Rachpon [1 ]
Dehollain, Juan P. [1 ]
Freer, Solomon [1 ]
Hudson, Fay E. [1 ]
Veldhorst, Menno [1 ]
Rahman, Rajib [2 ]
Klimeck, Gerhard [2 ]
Itoh, Kohei M. [3 ]
Jamieson, David N. [4 ]
McCallum, Jeffrey C. [4 ]
Dzurak, Andrew S. [1 ]
Morello, Andrea [1 ]
机构
[1] Univ New South Wales, Sch Elect Engn & Telecommun, Ctr Quantum Computat & Commun Technol, Sydney, NSW 2052, Australia
[2] Purdue Univ, Network Computat Nanotechnol, W Lafayette, IN 47907 USA
[3] Keio Univ, Sch Fundamental Sci & Technol, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
[4] Univ Melbourne, Sch Phys, Ctr Quantum Computat & Commun Technol, Melbourne, Vic 3010, Australia
来源
SCIENCE ADVANCES | 2015年 / 1卷 / 03期
基金
日本学术振兴会; 澳大利亚研究理事会; 美国国家科学基金会;
关键词
Coherence time - Electrostatic gates - Gate fidelity - Large scale quantum computers - Microwave field - Microwave magnetic field - Microwave sources - Quantum control;
D O I
10.1126/sciadv.1500022
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Large-scale quantum computers must be built upon quantum bits that are both highly coherent and locally controllable. We demonstrate the quantum control of the electron and the nuclear spin of a single P-31 atom in silicon, using a continuous microwave magnetic field together with nanoscale electrostatic gates. The qubits are tuned into resonance with the microwave field by a local change in electric field, which induces a Stark shift of the qubit energies. This method, known as A-gate control, preserves the excellent coherence times and gate fidelities of isolated spins, and can be extended to arbitrarily many qubits without requiring multiple microwave sources.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Single-spin qubits in isotopically enriched silicon at low magnetic field
    R. Zhao
    T. Tanttu
    K. Y. Tan
    B. Hensen
    K. W. Chan
    J. C. C. Hwang
    R. C. C. Leon
    C. H. Yang
    W. Gilbert
    F. E. Hudson
    K. M. Itoh
    A. A. Kiselev
    T. D. Ladd
    A. Morello
    A. Laucht
    A. S. Dzurak
    Nature Communications, 10
  • [2] Single-spin qubits in isotopically enriched silicon at low magnetic field
    Zhao, R.
    Tanttu, T.
    Tan, K. Y.
    Hensen, B.
    Chan, K. W.
    Hwang, J. C. C.
    Leon, R. C. C.
    Yang, C. H.
    Gilbert, W.
    Hudson, F. E.
    Itoh, K. M.
    Kiselev, A. A.
    Ladd, T. D.
    Morello, A.
    Laucht, A.
    Dzurak, A. S.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [3] Single-spin readout for buried dopant semiconductor qubits
    Hollenberg, LCL
    Wellard, CJ
    Pakes, CI
    Fowler, AG
    PHYSICAL REVIEW B, 2004, 69 (23) : 233301 - 1
  • [4] Operation of Single-Spin Qubits: Recent Advances and Prospects
    Zhang, Zhizhuo
    Ran, Jushang
    Gao, Fei
    Jia, Chuancheng
    Guo, Xuefeng
    ADVANCED PHYSICS RESEARCH, 2025,
  • [5] Charge noise, spin-orbit coupling, and dephasing of single-spin qubits
    Bermeister, Adam
    Keith, Daniel
    Culcer, Dimitrie
    APPLIED PHYSICS LETTERS, 2014, 105 (19)
  • [6] Electrically detected single-spin resonance with quantum spin Hall edge states
    Delgado, F.
    Fernandez-Rossier, J.
    PHYSICAL REVIEW B, 2023, 107 (09)
  • [7] Single-Spin Relaxation in a Synthetic Spin-Orbit Field
    Borjans, F.
    Zajac, D. M.
    Hazard, T. M.
    Petta, J. R.
    PHYSICAL REVIEW APPLIED, 2019, 11 (04)
  • [8] Efficient controlled-phase gate for single-spin qubits in quantum dots
    Meunier, T.
    Calado, V. E.
    Vandersypen, L. M. K.
    PHYSICAL REVIEW B, 2011, 83 (12)
  • [9] Single-spin entanglement
    G. B. Furman
    V. M. Meerovich
    V. L. Sokolovsky
    Quantum Information Processing, 2017, 16
  • [10] Single-spin entanglement
    Furman, G. B.
    Meerovich, V. M.
    Sokolovsky, V. L.
    QUANTUM INFORMATION PROCESSING, 2017, 16 (09)