Asymptotic and qualitative performance of non-parametric density estimators: a comparative study

被引:6
|
作者
Takada, Teruko [1 ]
机构
[1] Osaka City Univ, Grad Sch Business, Osaka 5588585, Japan
来源
ECONOMETRICS JOURNAL | 2008年 / 11卷 / 03期
基金
日本学术振兴会;
关键词
Density estimation; Heavy tail; SNP; Kernel; Adaptive kernel; Logspline; Convergence rate; Hellinger;
D O I
10.1111/j.1368-423X.2008.00249.x
中图分类号
F [经济];
学科分类号
02 ;
摘要
Motivated by finance applications, we assessed the performance of several univariate density estimation methods, focusing on their ability to deal with heavy-tailed target densities. Four approaches, a fixed bandwidth kernel estimator, an adaptive bandwidth kernel estimator, the Hermite series (SNP) estimator of Gallant and Nychka, and the logspline estimator of Kooperberg and Stone, are compared. We conclude that the logspline and adaptive kernel methods provide superior performance, and the convergence rate of the SNP estimator is remarkably slow compared with the other methods. The Hellinger convergence rate of the SNP estimator is derived as a function of tail heaviness. These findings are confirmed in Monte Carlo experiments. Qualitative assessment reveals the possibility that side lobes in the tails of the fixed kernel and SNP estimates are artefacts of the fitting method.
引用
收藏
页码:573 / 592
页数:20
相关论文
共 50 条
  • [31] NON-PARAMETRIC ESTIMATION OF A MULTIVARIATE PROBABILITY DENSITY
    EPANECHN.VA
    [J]. THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1969, 14 (01): : 153 - &
  • [32] Focused Information Criterion for Restricted Mean Survival Times: Non-Parametric or Parametric Estimators
    Nemes, Szilard
    Gustavsson, Andreas
    Jauhiainen, Alexandra
    [J]. ENTROPY, 2022, 24 (05)
  • [33] Predicting missing values: a comparative study on non-parametric approaches for imputation
    Burim Ramosaj
    Markus Pauly
    [J]. Computational Statistics, 2019, 34 : 1741 - 1764
  • [34] Predicting missing values: a comparative study on non-parametric approaches for imputation
    Ramosaj, Burim
    Pauly, Markus
    [J]. COMPUTATIONAL STATISTICS, 2019, 34 (04) : 1741 - 1764
  • [35] A Non-parametric Density Kernel in Density Peak Based Clustering
    Hou, Jian
    Zhang, Aihua
    [J]. 2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 4362 - 4367
  • [36] Comparative study of species sensitivity distributions based on non-parametric kernel density estimation for some transition metals
    Wang, Ying
    Feng, Chenglian
    Liu, Yuedan
    Zhao, Yujie
    Li, Huixian
    Zhao, Tianhui
    Guo, Wenjing
    [J]. ENVIRONMENTAL POLLUTION, 2017, 221 : 343 - 350
  • [37] Assessing the efficiency of non-parametric estimators of species richness for marine microplankton
    Branco, Miguel
    Figueiras, Francisco G.
    Cermeno, Pedro
    [J]. JOURNAL OF PLANKTON RESEARCH, 2018, 40 (03) : 230 - 243
  • [38] Survival function of a power transformer and a switch by means of non-parametric estimators
    Aparicio Ruiz, P.
    Rodriguez Palero, M.
    Onieva Gimenez, L.
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION MANAGEMENT AND ENGINEERING, 2013, 1 (01) : 3 - 11
  • [39] Asymptotic optimality of periodic spline interpolation in non-parametric regression
    Cho J.
    Levit B.
    [J]. Journal of Statistical Theory and Practice, 2008, 2 (3) : 465 - 474
  • [40] A Computationally Efficient, Consistent Bootstrap for Inference with Non-parametric DEA Estimators
    Alois Kneip
    Léopold Simar
    Paul W. Wilson
    [J]. Computational Economics, 2011, 38 : 483 - 515