Asymptotic and qualitative performance of non-parametric density estimators: a comparative study

被引:6
|
作者
Takada, Teruko [1 ]
机构
[1] Osaka City Univ, Grad Sch Business, Osaka 5588585, Japan
来源
ECONOMETRICS JOURNAL | 2008年 / 11卷 / 03期
基金
日本学术振兴会;
关键词
Density estimation; Heavy tail; SNP; Kernel; Adaptive kernel; Logspline; Convergence rate; Hellinger;
D O I
10.1111/j.1368-423X.2008.00249.x
中图分类号
F [经济];
学科分类号
02 ;
摘要
Motivated by finance applications, we assessed the performance of several univariate density estimation methods, focusing on their ability to deal with heavy-tailed target densities. Four approaches, a fixed bandwidth kernel estimator, an adaptive bandwidth kernel estimator, the Hermite series (SNP) estimator of Gallant and Nychka, and the logspline estimator of Kooperberg and Stone, are compared. We conclude that the logspline and adaptive kernel methods provide superior performance, and the convergence rate of the SNP estimator is remarkably slow compared with the other methods. The Hellinger convergence rate of the SNP estimator is derived as a function of tail heaviness. These findings are confirmed in Monte Carlo experiments. Qualitative assessment reveals the possibility that side lobes in the tails of the fixed kernel and SNP estimates are artefacts of the fitting method.
引用
收藏
页码:573 / 592
页数:20
相关论文
共 50 条
  • [1] Qualitative and asymptotic performance of SNP density estimators
    Fenton, VM
    Gallant, AR
    [J]. JOURNAL OF ECONOMETRICS, 1996, 74 (01) : 77 - 118
  • [3] Non-Parametric Regression and Riesz Estimators
    Kountzakis, Christos
    Tsachouridou-Papadatou, Vasileia
    [J]. AXIOMS, 2023, 12 (04)
  • [4] Seaport performance analysis using robust non-parametric efficiency estimators
    Simoes, P.
    Marques, R. C.
    [J]. TRANSPORTATION PLANNING AND TECHNOLOGY, 2010, 33 (05) : 435 - 451
  • [5] Asymptotic minimax risk of predictive density estimation for non-parametric regression
    Xu, Xinyi
    Liang, Feng
    [J]. BERNOULLI, 2010, 16 (02) : 543 - 560
  • [6] A Comparative Study of Parametric Versus Non-Parametric Text Classification Algorithms
    Chistol, Mihaela
    [J]. 2020 15TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND APPLICATION SYSTEMS (DAS), 2020, : 208 - 213
  • [7] Non-parametric estimators of multivariate extreme dependence functions
    Abdous, B
    Ghoudi, K
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2005, 17 (08) : 915 - 935
  • [8] A comparison of non-parametric spectral estimators for SAR imaging
    Yildirim, I
    Tezel, NS
    Erer, I
    Yazgan, B
    [J]. RAST 2003: RECENT ADVANCES IN SPACE TECHNOLOGIES, PROCEEDINGS, 2003, : 369 - 374
  • [9] Non-parametric maximum likelihood estimators for disease mapping
    Biggeri, A
    Marchi, M
    Lagazio, C
    Martuzzi, M
    Böhning, D
    [J]. STATISTICS IN MEDICINE, 2000, 19 (17-18) : 2539 - 2554
  • [10] Simple non-parametric estimators for unemployment duration analysis
    Wichert, Laura
    Wilke, Ralf A.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2008, 57 : 117 - 126