TDB protects vascular endothelial cells against oxygen-glucose deprivation/reperfusion-induced injury by targeting miR-34a to increase Bcl-2 expression

被引:41
|
作者
Liao, Li-Xi [1 ]
Zhao, Ming-Bo [1 ]
Dong, Xin [1 ]
Jiang, Yong [1 ]
Zeng, Ke-Wu [1 ]
Tu, Peng-Fei [1 ]
机构
[1] Peking Univ, Sch Pharmaceut Sci, State Key Lab Nat & Biomimet Drugs, Beijing 100191, Peoples R China
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
TRANSMISSION ELECTRON-MICROSCOPY; CEREBRAL-ARTERY OCCLUSION; MITOCHONDRIAL; ISCHEMIA; APOPTOSIS; BRAIN; DEATH; MECHANISMS; PROTEINS; SURVIVAL;
D O I
10.1038/srep37959
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Prolonged ischemia can result in apoptotic death of vascular endothelial cells and lead to ischemic vascular diseases including vascular dementia, arteriosclerosis and brain oedema. Finding protective strategies to prevent this is therefore an urgent mission. Recent studies have shown that dysregulation of microRNAs (miRNAs) can lead to imbalance of Bcl-2 family proteins and mitochondrial dysfunction, leading to further damage of vascular cells under ischemic conditions. However, whether miRNAs can be used as a drug target for treating vascular diseases is not fully understood. In this study, we observed that the natural product 2,4,5-trihydroxybenzaldehyde (TDB) could effectively inhibit vascular cell apoptosis following oxygen-glucose deprivation/reperfusion (OGD/R) by maintaining mitochondrial membrane potential (MMP) and suppressing activation of the mitochondria-dependent caspase-9/3 apoptosis pathway. Furthermore, we identified miR-34a, a crucial negative regulator of Bcl-2, as a target for the protective effect of TDB on vascular cells. TDB-induced suppression of miR34a resulted in a significant upregulation of Bcl-2 protein, MMP maintenance, and the survival of vascular cells following OGD/R. Our findings suggest that targeting miR-34a with the natural product TDB may provide a novel strategy for the treatment of ischemic vascular injuries, and demonstrate the therapeutic potential in targeting miRNAs using appropriate small molecules.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Sinensetin attenuates oxygen-glucose deprivation/reperfusion-induced neurotoxicity by MAPK pathway in human cerebral microvascular endothelial cells
    Yang, Dong
    Yang, Ronggang
    Shen, Jiangyi
    Huang, Lu
    Men, Shuai
    Wang, Tiancai
    JOURNAL OF APPLIED TOXICOLOGY, 2022, 42 (04) : 683 - 693
  • [22] Overexpression of miR-217-5p protects against oxygen–glucose deprivation/reperfusion-induced neuronal injury via inhibition of PTEN
    Zhongquan Yi
    Yuanyuan Shi
    Panwen Zhao
    Yun Xu
    Pinglei Pan
    Human Cell, 2020, 33 : 1026 - 1035
  • [23] Germacrone protects against oxygen-glucose deprivation/reperfusion injury by inhibiting autophagy processes in PC12 cells
    Zhang, Jianxing
    Yuan, Li
    Wang, Sujie
    Liu, Jiang
    Bi, Huiqin
    Chen, Guojuan
    Li, Jingjing
    Chen, Lili
    BMC COMPLEMENTARY MEDICINE AND THERAPIES, 2020, 20 (01) : 77
  • [24] Germacrone protects against oxygen-glucose deprivation/reperfusion injury by inhibiting autophagy processes in PC12 cells
    Jianxing Zhang
    Li Yuan
    Sujie Wang
    Jiang Liu
    Huiqin Bi
    Guojuan Chen
    Jingjing Li
    Lili Chen
    BMC Complementary Medicine and Therapies, 20
  • [25] Dexmedetomidine protects hepatic cells against oxygen-glucose deprivation/reperfusion injury via lncRNA CCAT1
    Zhou, Zhuang
    Chen, Qingsong
    Wan, Lei
    Zheng, Daofeng
    Li, Zhongtang
    Wu, Zhongjun
    CELL BIOLOGY INTERNATIONAL, 2018, 42 (09) : 1250 - 1258
  • [26] PAQR3 protects against oxygen–glucose deprivation/reperfusion-induced injury through the ERK signaling pathway in N2A cells
    Wenna Peng
    Xiaoye Mo
    Lihua Li
    Tonglin Lu
    Zhiping Hu
    Journal of Molecular Histology, 2020, 51 : 307 - 315
  • [27] Hsp20 Protects against Oxygen-Glucose Deprivation/Reperfusion-Induced Golgi Fragmentation and Apoptosis through Fas/FasL Pathway
    Zhong, Bingwu
    Hu, Zhiping
    Tan, Jieqiong
    Lu, Tonglin
    Lei, Qiang
    Chen, Chunli
    Zeng, Liuwang
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2015, 2015
  • [28] TAK-242 protects against oxygen-glucose deprivation and reoxygenation-induced injury in brain microvascular endothelial cells and alters the expression pattern of lncRNAs
    Kong, Li-Yun
    Zhu, Shen-Yu
    Si, Mao-Yan
    Xu, Xue-Hua
    Yu, Jun-Jian
    Zhong, Wei-Xiang
    Sang, Cheng-Peng
    Rao, Ding-Yu
    Xie, Fa-Chun
    Liu, Zi-You
    Tang, Zhi-Xian
    JOURNAL OF THORACIC DISEASE, 2023, 15 (05) : 2571 - +
  • [29] Cinepazide maleate protects PC12 cells against oxygen-glucose deprivation-induced injury
    Zhao, Jun
    Bai, Ya
    Zhang, Chen
    Zhang, Xiao
    Zhang, Yun-Xia
    Chen, Jing
    Xiong, Lize
    Shi, Ming
    Zhao, Gang
    NEUROLOGICAL SCIENCES, 2014, 35 (06) : 875 - 881
  • [30] Noscapine protects the H9c2 cardiomyocytes of rats against oxygen-glucose deprivation/reperfusion injury
    Vahabzadeh, Gelareh
    Soltani, Hamidreza
    Barati, Mahmood
    Golab, Fereshteh
    Jafari-Sabet, Majid
    Safari, Sepideh
    Moazam, Ashrafolsadat
    Mohamadrezaei, Hananeh
    MOLECULAR BIOLOGY REPORTS, 2020, 47 (08) : 5711 - 5719