5-aminolevulinic acid improves salt tolerance mediated by regulation of tetrapyrrole and proline metabolism in Brassica napus L. seedlings under NaCl stress

被引:62
|
作者
Xiong, Jun-Lan [1 ]
Wang, Hang-Chao [1 ]
Tan, Xiao-Yu [1 ]
Zhang, Chun-Lei [1 ,2 ]
Naeem, Muhammad Shahbaz [3 ]
机构
[1] Chinese Acad Agr Sci, Oilcrops Res Inst, Wuhan 430062, Hubei, Peoples R China
[2] Minist Agr, Key Lab Biol & Genet Improvement Oilcrops, Wuhan 430062, Hubei, Peoples R China
[3] Univ Agr Faisalabad, Dept Bot, Faisalabad, Pakistan
基金
中国国家自然科学基金;
关键词
Salt stress; 5-aminolevulinic acid; Chlorophyll; Heme; Proline; Photosynthesis; HELIANTHUS-ANNUUS L; PHOTOSYNTHETIC GAS-EXCHANGE; ANTIOXIDANT ENZYME-ACTIVITY; CHLOROPHYLL BIOSYNTHESIS; SALINITY STRESS; WATER-STRESS; GROWTH; PLANTS; ASSAY; MODULATION;
D O I
10.1016/j.plaphy.2018.01.001
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
5-aminolevulinic acid (ALA), a key biosynthetic precursor of tetrapyrroles, is vital for plant growth and adaptation to stress environments. Although exogenous ALA could enhance photosynthesis and biomass accumulation in plants under stress conditions, the underlying physiological and molecular mechanisms governed by ALA in promoting salt tolerance in Brassica napus L. are not yet clearly understood. In the present study, exogenous ALA with the concentration of 30 mg L-1 was applied to the leaves of B. napus seedlings subjected to 200 mM NaCl. The results showed that NaCl stress decreased the photosynthesis, biomass accumulation, and levels of chlorophyll and heme with the reduction of the concentrations of intermediates including ALA, protoporphyrin IX (Proto IX), Mg-Proto IX, and Pchlide in the tetrapyrrole (chlorophyll and heme) biosynthetic pathway. The transcript levels of genes encoding ALA-associated enzymes and genes encoding Mg-chelatase in the chlorophyll biosynthetic branch were down-regulated, while the expression levels of genes encoding Fe-chelatase in the heme branch were not significantly altered by NaCl stress. Foliar application with ALA enhanced the above-ground biomass, net photosynthetic rate, activities of antioxidant enzymes, accumulation of chlorophyll and heme, and concentrations of intermediates related to chlorophyll and heme biosynthesis in B. napus under 200 mM NaCl. The expression of most genes mentioned above remained constant in ALA-treated plants in comparison with non-ALA-treated plants under NaCl stress. Additionally, exogenous ALA synchronously induced the proline concentration and up-regulated the expression of genes P5CS and ProDH encoding proline metabolic enzymes in the NaCl treatment. These findings suggested that ALA improved salt tolerance through promoting the accumulation of chlorophyll and heme resulting from the increase of intermediate levels in the tetrapyrrole biosynthetic pathway, along with enhancing the proline accumulation in B. napus.
引用
收藏
页码:88 / 99
页数:12
相关论文
共 50 条
  • [11] 5-Aminolevulinic Acid Ameliorates the Growth, Photosynthetic Gas Exchange Capacity, and Ultrastructural Changes Under Cadmium Stress in Brassica napus L.
    Basharat Ali
    B. Wang
    Shafaqat Ali
    M. A. Ghani
    M. T. Hayat
    C. Yang
    L. Xu
    W. J. Zhou
    Journal of Plant Growth Regulation, 2013, 32 : 604 - 614
  • [12] 5-Aminolevulinic Acid Activates Antioxidative Defence System and Seedling Growth in Brassica napus L. under Water-Deficit Stress
    Liu, D.
    Pei, Z. F.
    Naeem, M. S.
    Ming, D. F.
    Liu, H. B.
    Khan, F.
    Zhou, W. J.
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2011, 197 (04) : 284 - 295
  • [13] 5-Aminolevulinic Acid Ameliorates the Growth, Photosynthetic Gas Exchange Capacity, and Ultrastructural Changes Under Cadmium Stress in Brassica napus L.
    Ali, Basharat
    Wang, B.
    Ali, Shafaqat
    Ghani, M. A.
    Hayat, M. T.
    Yang, C.
    Xu, L.
    Zhou, W. J.
    JOURNAL OF PLANT GROWTH REGULATION, 2013, 32 (03) : 604 - 614
  • [14] Gradual Exposure to Salinity Improves Tolerance to Salt Stress in Rapeseed (Brassica napus L.)
    Santangeli, Michael
    Capo, Concetta
    Beninati, Simone
    Pietrini, Fabrizio
    Forni, Cinzia
    WATER, 2019, 11 (08)
  • [15] Regulation of seed soaking with indole-3-butyric acid potassium salt (IBA-K) on rapeseed (Brassica napus L.) seedlings under NaCl stress
    Li, Jia-Huan
    Feng, Nai-Jie
    Zheng, Dian-Feng
    Du, Xiao-Le
    Wu, Jia-Shuang
    Wang, Xi
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [16] Effects of 5-aminolevulinic Acid on the Bioactive Compounds and Seedling Growth of Oilseed Rape (Brassica napus L.)
    Maodzeka, Antony
    Wang, Qian
    Chen, Xiaoyang
    Hussain, Nazim
    Wu, Dezhi
    Jiang, Lixi
    JOURNAL OF PLANT BIOLOGY, 2019, 62 (03) : 181 - 194
  • [17] Effects of 5-aminolevulinic Acid on the Bioactive Compounds and Seedling Growth of Oilseed Rape (Brassica napus L.)
    Antony Maodzeka
    Qian Wang
    Xiaoyang Chen
    Nazim Hussain
    Dezhi Wu
    Lixi Jiang
    Journal of Plant Biology, 2019, 62 : 181 - 194
  • [18] Exogenous application of 5-aminolevulinic acid improves low- temperature stress tolerance of maize seedlings
    Wang, Yi
    Li, Jing
    Gu, Wanrong
    Zhang, Qian
    Tian, Lixin
    Guo, Shi
    Wei, Shi
    CROP & PASTURE SCIENCE, 2018, 69 (06): : 587 - 593
  • [19] Physiological Mechanism of Exogenous 5-Aminolevulinic Acid Improved the Tolerance of Chinese Cabbage (Brassica pekinensis L.) to Cadmium Stress
    Yang, Lijing
    Wu, Yue
    Wang, Xiaomin
    Lv, Jian
    Tang, Zhongqi
    Hu, Linli
    Luo, Shilei
    Wang, Ruidong
    Ali, Basharat
    Yu, Jihua
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [20] Mechanisms of salt stress tolerance development in barley plants under the influence of 5-aminolevulinic acid
    N. G. Averina
    E. R. Gritskevich
    I. V. Vershilovskaya
    A. V. Usatov
    E. B. Yaronskaya
    Russian Journal of Plant Physiology, 2010, 57 : 792 - 798