Exact knot solutions in a generalized Skyrme-Faddeev model

被引:2
|
作者
Zou, L. P. [1 ,2 ,3 ]
Zhang, P. M. [1 ,4 ,5 ]
Pak, D. G. [1 ,6 ]
机构
[1] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China
[2] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Lanzhou Univ, Res Ctr Hadron, Lanzhou 730000, Peoples R China
[5] Lanzhou Univ, CSR Phys, Lanzhou 730000, Peoples R China
[6] Inst Nucl Phys, Lab Few Nucleon Syst, Ulugbek 100214, Uzbekistan
来源
PHYSICAL REVIEW D | 2013年 / 87卷 / 10期
关键词
SOLITON-SOLUTIONS;
D O I
10.1103/PhysRevD.87.107701
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose a generalized Skyrme-Faddeev type theory with an additional scalar field. In a special case of model parameters, one has a theory which admits exact knot solutions given by a class of exact toroidal solitons from the Aratyn-Ferreira-Zimerman (AFZ) integrable CP1 model. In a general case, the theory admits an exact knot solution for a unit Hopf charge. For higher Hopf charges, we perform numeric analysis of the solutions and obtain estimates for the knot energies using an energy minimization procedure based on ansatz with AFZ field configurations and with rational functions. We show that AFZ configurations provide better approximate solutions. The corresponding knot energies are in good agreement with a standard law for the low energy bound, E-H similar or equal to Q(H)(3/4).
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Exact vortex solutions in an extended Skyrme-Faddeev model
    Ferreira, L. A.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2009, (05):
  • [2] Exact vortex solutions in a CPN Skyrme-Faddeev type model
    L. A. Ferreira
    P. Klimas
    [J]. Journal of High Energy Physics, 2010
  • [3] Exact vortex solutions in a CPN Skyrme-Faddeev type model
    Ferreira, L. A.
    Klimas, P.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2010, (10):
  • [4] Potentials and the vortex solutions in the CPN Skyrme-Faddeev model
    Amari, Yuki
    Klimas, Pawel
    Sawado, Nobuyuki
    Tamaki, Yuta
    [J]. PHYSICAL REVIEW D, 2015, 92 (04):
  • [5] Knots in the skyrme-Faddeev model
    Sutcliffe, Paul
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2087): : 3001 - 3020
  • [6] Some vortex solutions in the extended Skyrme-Faddeev model
    Ferreira, L. A.
    Hayasaka, M.
    Jaykka, J.
    Sawado, N.
    Toda, K.
    [J]. XXTH INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-20), 2013, 411
  • [7] Decomposition of SU(2) connection and knot structure in Skyrme-Faddeev model
    Ren, Ji-Rong
    Li, Ran
    Duan, Yi-Shi
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2008, 23 (09): : 1447 - 1456
  • [8] Cabling in the Skyrme-Faddeev model
    Jennings, Paul
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (31)
  • [9] Symmetry Reductions of the Skyrme-Faddeev Model
    Martina, L.
    Martone, G. I.
    Zykov, S.
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2012, 122 (01) : 323 - 334
  • [10] Symmetry Reductions of the Skyrme-Faddeev Model
    L. Martina
    G. I. Martone
    S. Zykov
    [J]. Acta Applicandae Mathematicae, 2012, 122 : 323 - 334