Noncommutative space from dynamical noncommutative geometries

被引:0
|
作者
Van Oystaeyen, Freddy [1 ]
机构
[1] Univ Antwerp, Dept Math & Comp Sci, B-2020 Antwerp, Belgium
关键词
Dynamical noncommutative geometry; Noncommutative spaces; Dequantization; ALGEBRAS;
D O I
10.1016/j.geomphys.2008.10.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present noncommutative topology as a basis for noncommutative geometry phrased completely in terms of partially ordered sets with operations. In this note we introduce a noncommutative space-time starting from a dynamical system of noncommutative topologies based on the notion of temporal points. At every moment a commutative topological space is constructed and it is shown to approximate the noncommutative space in sheaf theoretical terms; this so called moment space should be the space where observed phenomena should be described, the commutative shadow of the noncommutative space is to be thought of as the usual space-time. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:185 / 196
页数:12
相关论文
共 50 条
  • [41] A simple signal of noncommutative space
    Acatrinei, CS
    [J]. MODERN PHYSICS LETTERS A, 2005, 20 (19) : 1437 - 1441
  • [42] Discreteness of area in noncommutative space
    Amelino-Camelia, Giovanni
    Gubitosi, Giulia
    Mercati, Flavio
    [J]. PHYSICS LETTERS B, 2009, 676 (4-5) : 180 - 183
  • [43] Gravitational fields on a noncommutative space
    Nair, VP
    [J]. NUCLEAR PHYSICS B, 2003, 651 (1-2) : 313 - 327
  • [44] QUANTUM MECHANICS IN NONCOMMUTATIVE SPACE
    Galikova, Veronika
    Kovacik, Samuel
    Presnajder, Peter
    [J]. ACTA PHYSICA SLOVACA, 2015, 65 (03) : 153 - U83
  • [45] Dirac oscillator in noncommutative space
    H.Hassanabadi
    S.S.Hosseini
    S.Zarrinkamar
    [J]. Chinese Physics C, 2014, (06) : 29 - 35
  • [46] Dirac oscillator in noncommutative space
    HHassanabadi
    SSHosseini
    SZarrinkamar
    [J]. Chinese Physics C., 2014, 38 (06) - 35
  • [47] The injective spectrum of a noncommutative space
    Pappacena, CJ
    [J]. JOURNAL OF ALGEBRA, 2002, 250 (02) : 559 - 602
  • [48] Noncommutative geometry of phase space
    Buric, Maja
    Madore, John
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2011, 43 (12) : 3477 - 3495
  • [49] Spavieri Effect in Noncommutative Space
    Liu-Biao Ma
    Qing Wang
    Ling-Bao Kong
    Jian Jing
    [J]. International Journal of Theoretical Physics, 62
  • [50] The Fundamental Group of a Noncommutative Space
    Walter D. van Suijlekom
    Jeroen Winkel
    [J]. Algebras and Representation Theory, 2022, 25 : 1003 - 1035