On the accuracy of a covariance matching method for continuous-time errors-in-variables identification

被引:11
|
作者
Soderstrom, Torsten [1 ]
Irshad, Yasir [2 ]
Mossberg, Magnus [2 ]
Zheng, Wei Xing [3 ]
机构
[1] Uppsala Univ, Div Syst & Control, Dept Informat Technol, SE-75105 Uppsala, Sweden
[2] Karlstad Univ, Dept Engn & Phys, SE-65188 Karlstad, Sweden
[3] Univ Western Sydney, Sch Comp & Math, Penrith, NSW 1797, Australia
基金
瑞典研究理事会; 澳大利亚研究理事会;
关键词
Continuous-time systems; Errors-in-variables systems; Parameter estimation; Covariance matching; Accuracy analysis; MODEL;
D O I
10.1016/j.automatica.2013.07.010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An analysis of a covariance matching method for continuous-time errors-in-variables system identification from discrete-time data is made. In the covariance matching method, the noise-free input signal is not explicitly modeled and only assumed to be a stationary process. The asymptotic normalized covariance matrix, valid for a large number of data and a small sampling interval, is derived. This involves the evaluation of a covariance matrix of estimated covariance elements and estimated derivatives of such elements, and large parts of the paper are devoted to this task. The latter covariance matrix consists of two parts, where the first part contains integrals that are approximations of Riemann sums, and the second part depends on the measurement noise variances. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2982 / 2993
页数:12
相关论文
共 50 条
  • [21] Time-Domain Errors-in-Variables Identification of Transmissibilities
    Aljanaideh, Khaled F.
    Sanjeevini, Sneha
    Bernstein, Dennis S.
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 3012 - 3017
  • [22] Generalized Eigenvector Method for Errors-In-Variables Models Identification
    Ikenoue, Masato
    Wada, Kiyoshi
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 777 - 782
  • [23] Accuracy analysis of time domain maximum likelihood method and sample maximum likelihood method for errors-in-variables and output error identification
    Soderstrom, Torsten
    Hong, Mei
    Schoukens, Johan
    Pintelon, Rik
    AUTOMATICA, 2010, 46 (04) : 721 - 727
  • [24] Identification of errors-in-variables ARX model with time varying time delay
    Zhang, Jinxi
    Guo, Fan
    Hao, Kuangrong
    Chen, Lei
    Huang, Biao
    JOURNAL OF PROCESS CONTROL, 2022, 115 : 134 - 144
  • [25] An optimal regularized instrumental variable method for errors-in-variables identification
    Boeira, Emerson C.
    Eckhard, Diego
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 1592 - 1597
  • [26] Identification of a nonlinear errors-in-variables model
    Vajk, I
    Hetthéssy, J
    CONTROL APPLICATIONS OF OPTIMISATION 2003, 2003, : 21 - 26
  • [27] Identification of nonlinear errors-in-variables models
    Vajk, I
    Hetthéssy, J
    AUTOMATICA, 2003, 39 (12) : 2099 - 2107
  • [28] Recursive identification of errors-in-variables systems
    Chen, Han-Fu
    2006 CHINESE CONTROL CONFERENCE, VOLS 1-5, 2006, : 1576 - 1580
  • [29] Identification of dynamic errors-in-variables models
    Castaldi, P
    Soverini, U
    AUTOMATICA, 1996, 32 (04) : 631 - 636
  • [30] Errors-in-variables methods in system identification
    Soderstrom, Torsten
    AUTOMATICA, 2007, 43 (06) : 939 - 958