The Krein method and the globally convergent method for experimental data

被引:15
|
作者
Karchevsky, Andrey L. [1 ]
Klibanov, Michael V. [2 ]
Lam Nguyen [3 ]
Pantong, Natee [4 ]
Sullivan, Anders [3 ]
机构
[1] Sobolev Math Inst, Novosibirsk 630090, Russia
[2] Univ N Carolina, Dept Math & Stat, Charlotte, NC 28223 USA
[3] US Army Res Lab, Adelphy, MD 20783 USA
[4] Royal Thai Air Force Acad, Dept Math & Comp Sci, Bangkok, Thailand
关键词
1-d Coefficient Inverse Problems; Comparison of two methods; Calibration factor; INVERSE PROBLEM; EQUATION;
D O I
10.1016/j.apnum.2013.09.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Comparison of numerical performances of two methods for coefficient inverse problems is described. The first one is the classical Krein integral equation method, and the second one is the recently developed approximately globally convergent numerical method. This comparison is performed for both computationally simulated and experimental data. (C) 2013 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:111 / 127
页数:17
相关论文
共 50 条
  • [1] A GLOBALLY CONVERGENT NUMERICAL METHOD FOR A 1-D INVERSE MEDIUM PROBLEM WITH EXPERIMENTAL DATA
    Klibanov, Michael V.
    Nguyen, Loc H.
    Sullivan, Anders
    Nguyen, Lam
    INVERSE PROBLEMS AND IMAGING, 2016, 10 (04) : 1057 - 1085
  • [2] RECONSTRUCTION OF THE REFRACTIVE INDEX FROM EXPERIMENTAL BACKSCATTERING DATA USING A GLOBALLY CONVERGENT INVERSE METHOD
    Nguyen Trung Thanh
    Beilina, Larisa
    Klibanov, Michael V.
    Fiddy, Michael A.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (03): : B273 - B293
  • [3] Globally Convergent Modification of the Quickprop Method
    Michael N. Vrahatis
    George D. Magoulas
    Vassilis P. Plagianakos
    Neural Processing Letters, 2000, 12 : 159 - 170
  • [4] A globally convergent ball Stirling method
    Sen, R
    Guhathakurta, P
    APPLIED NUMERICAL MATHEMATICS, 2004, 51 (2-3) : 329 - 340
  • [5] A globally convergent incremental Newton method
    M. Gürbüzbalaban
    A. Ozdaglar
    P. Parrilo
    Mathematical Programming, 2015, 151 : 283 - 313
  • [6] A GLOBALLY CONVERGENT STABILIZED SQP METHOD
    Gill, Philip E.
    Robinson, Daniel P.
    SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (04) : 1983 - 2010
  • [7] Globally convergent modification of the quickprop method
    Vrahatis, MN
    Magoulas, GD
    Plagianakos, VP
    NEURAL PROCESSING LETTERS, 2000, 12 (02) : 159 - 169
  • [8] A globally convergent incremental Newton method
    Guerbuzbalaban, M.
    Ozdaglar, A.
    Parrilo, P.
    MATHEMATICAL PROGRAMMING, 2015, 151 (01) : 283 - 313
  • [9] A globally convergent zero finding method
    Suzuki, T
    Suzuki, T
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (06) : 3869 - 3875
  • [10] A GLOBALLY CONVERGENT BALL NEWTON METHOD
    NICKEL, KL
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (06) : 988 - 1003