On finite core-p2 p-groups

被引:1
|
作者
Lv, Heng [1 ]
Zhou, Wei [1 ]
Liu, Jianjun [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
SUBGROUPS;
D O I
10.1016/j.jpaa.2017.10.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A p-group G is called a core-p(2) group if vertical bar H : H-G vertical bar <= p(2) for every subgroup H of G (where HG denotes the normal core of H in G). In this paper, it is proved that the nilpotent class of a finite core-p(2) p-group is at most 5 if p >= 3, which is the best upper bound, and the derived length of a finite core-p(2) p-group is at most 3 if p >= 3, which is also the best upper bound. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:2505 / 2513
页数:9
相关论文
共 50 条
  • [31] ON THE COINCIDENCE OF AUTOMORPHISM GROUPS OF FINITE P-GROUPS
    Garg, Rohit
    Singh, Mandeep
    [J]. QUAESTIONES MATHEMATICAE, 2023, 46 (07) : 1385 - 1391
  • [32] On the representation of groups approximated by finite p-groups
    Leonov, Yu G.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2012, 63 (11) : 1706 - 1718
  • [33] Automorphism Groups of Some Finite p-Groups
    Liu, Heguo
    Wang, Yulei
    [J]. ALGEBRA COLLOQUIUM, 2016, 23 (04) : 623 - 650
  • [34] Finite 2-generator equilibrated p-groups
    Zhang, Qin-Hai
    Sun, Cui-Juan
    Qu, Hai-Peng
    Xu, Ming-Yao
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (06): : 814 - 820
  • [35] ON THE 2-NILPOTENT MULTIPLIER OF FINITE p-GROUPS
    Niroomand, Peyman
    Parvizi, Mohsen
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2015, 57 (01) : 201 - 210
  • [36] Finite 2-generator equilibrated p-groups
    Qin-hai Zhang
    Cui-juan Sun
    Hai-peng Qu
    Ming-yao Xu
    [J]. Science in China Series A: Mathematics, 2007, 50 : 814 - 820
  • [37] On automorphisms of some finite p-groups
    Yadav, Manoj K.
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2008, 118 (01): : 1 - 11
  • [38] The intersection of subgroups of finite p-groups
    Qinhai Zhang
    Junjun Wei
    [J]. Archiv der Mathematik, 2011, 96 : 9 - 17
  • [39] A Class of Finite Resistant p-Groups
    He Guo LIU
    Yu Lei WANG
    [J]. Acta Mathematica Sinica,English Series, 2017, (05) : 725 - 730
  • [40] Flatness conditions on finite p-groups
    Tandra, H
    Moran, W
    [J]. COMMUNICATIONS IN ALGEBRA, 2004, 32 (06) : 2215 - 2224