NEAR-ISOMETRIC LINEAR EMBEDDINGS OF MANIFOLDS

被引:0
|
作者
Hegde, Chinmay [1 ]
Sankaranarayanan, Aswin C. [1 ]
Baraniuk, Richard G. [1 ]
机构
[1] Rice Univ, ECE Dept, Houston, TX 77005 USA
关键词
Adaptive sampling; Linear Dimensionality Reduction; Whitney's Theorem; REDUCTION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a new method for linear dimensionality reduction of manifold-modeled data. Given a training set chi of Q points belonging to a manifold M subset of R-N, we construct a linear operator P : R-N -> R-M that approximately preserves the norms of all ((Q)(2)) pairwise difference vectors (or secants) of chi. We design the matrix P via a trace-norm minimization that can be efficiently solved as a semi-definite program (SDP). When chi comprises a sufficiently dense sampling of M, we prove that the optimal matrix P preserves all pairs of secants over M. We numerically demonstrate the considerable gains using our SDP-based approach over existing linear dimensionality reduction methods, such as principal components analysis (PCA) and random projections.
引用
收藏
页码:728 / 731
页数:4
相关论文
共 50 条
  • [11] A Sparse and Low-Rank Near-Isometric Linear Embedding Method for Feature Extraction in Hyperspectral Imagery Classification
    Sun, Weiwei
    Yang, Gang
    Du, Bo
    Zhang, Lefei
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (07): : 4032 - 4046
  • [12] Isometric Embeddings Between the Near Polygons and
    De Bruyn, Bart
    ANNALS OF COMBINATORICS, 2014, 18 (02) : 265 - 287
  • [13] PIECEWISE LINEAR EMBEDDINGS OF MANIFOLDS
    MILLETT, KC
    ILLINOIS JOURNAL OF MATHEMATICS, 1975, 19 (03) : 354 - 369
  • [15] COMPATIBILITY EQUATIONS FOR ISOMETRIC EMBEDDINGS OF RIEMANNIAN-MANIFOLDS
    CHO, CK
    HAN, CK
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1993, 23 (04) : 1231 - 1252
  • [16] Isometric embeddings of 2-spheres into Schwarzschild manifolds
    Armando J. Cabrera Pacheco
    Pengzi Miao
    Manuscripta Mathematica, 2016, 149 : 459 - 469
  • [17] Isometric embeddings of 2-spheres into Schwarzschild manifolds
    Pacheco, Armando J. Cabrera
    Miao, Pengzi
    MANUSCRIPTA MATHEMATICA, 2016, 149 (3-4) : 459 - 469
  • [18] Near Isometric Terminal Embeddings for Doubling Metrics
    Elkin, Michael
    Neiman, Ofer
    ALGORITHMICA, 2021, 83 (11) : 3319 - 3337
  • [19] Near Isometric Terminal Embeddings for Doubling Metrics
    Michael Elkin
    Ofer Neiman
    Algorithmica, 2021, 83 : 3319 - 3337
  • [20] ON NONLINEAR ISOMETRIC EMBEDDINGS OF NORMED LINEAR SPACES
    FIGIEL, T
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1968, 16 (03): : 185 - &