Session search modeling by partially observable Markov decision process

被引:8
|
作者
Yang, Grace Hui [1 ]
Dong, Xuchu [1 ,2 ]
Luo, Jiyun [1 ]
Zhang, Sicong [1 ]
机构
[1] Georgetown Univ, Dept Comp Sci, Washington, DC 20057 USA
[2] Jilin Univ, Coll Comp Sci & Technol, Changchun, Jilin, Peoples R China
来源
INFORMATION RETRIEVAL JOURNAL | 2018年 / 21卷 / 01期
关键词
Session search; Dynamic IR modeling; POMDP;
D O I
10.1007/s10791-017-9316-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Session search, the task of document retrieval for a series of queries in a session, has been receiving increasing attention from the information retrieval research community. Session search exhibits the properties of rich user-system interactions and temporal dependency. These properties lead to our proposal of using partially observable Markov decision process to model session search. On the basis of a design choice schema for states, actions and rewards, we evaluate different combinations of these choices over the TREC 2012 and 2013 session track datasets. According to the experimental results, practical design recommendations for using PODMP in session search are discussed.
引用
收藏
页码:56 / 80
页数:25
相关论文
共 50 条
  • [41] Active learning in partially observable Markov decision processes
    Jaulmes, R
    Pineau, J
    Precup, D
    MACHINE LEARNING: ECML 2005, PROCEEDINGS, 2005, 3720 : 601 - 608
  • [42] Structural Estimation of Partially Observable Markov Decision Processes
    Chang, Yanling
    Garcia, Alfredo
    Wang, Zhide
    Sun, Lu
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (08) : 5135 - 5141
  • [43] Nonapproximability results for partially observable Markov decision processes
    Lusena, C
    Goldsmith, J
    Mundhenk, M
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2001, 14 : 83 - 113
  • [44] Entropy Maximization for Partially Observable Markov Decision Processes
    Savas, Yagiz
    Hibbard, Michael
    Wu, Bo
    Tanaka, Takashi
    Topcu, Ufuk
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (12) : 6948 - 6955
  • [45] Decentralized Control of Partially Observable Markov Decision Processes
    Amato, Christopher
    Chowdhary, Girish
    Geramifard, Alborz
    Uere, N. Kemal
    Kochenderfer, Mykel J.
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 2398 - 2405
  • [46] On Anderson Acceleration for Partially Observable Markov Decision Processes
    Ermis, Melike
    Park, Mingyu
    Yang, Insoon
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 4478 - 4485
  • [47] Transition Entropy in Partially Observable Markov Decision Processes
    Melo, Francisco S.
    Ribeiro, Isabel
    INTELLIGENT AUTONOMOUS SYSTEMS 9, 2006, : 282 - +
  • [48] Partially observable Markov decision processes with reward information
    Cao, XR
    Guo, XP
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 4393 - 4398
  • [49] Partially Observable Markov Decision Processes in Robotics: A Survey
    Lauri, Mikko
    Hsu, David
    Pajarinen, Joni
    IEEE TRANSACTIONS ON ROBOTICS, 2023, 39 (01) : 21 - 40
  • [50] A primer on partially observable Markov decision processes (POMDPs)
    Chades, Iadine
    Pascal, Luz V.
    Nicol, Sam
    Fletcher, Cameron S.
    Ferrer-Mestres, Jonathan
    METHODS IN ECOLOGY AND EVOLUTION, 2021, 12 (11): : 2058 - 2072