Demining sensor modeling and feature-level fusion by Bayesian networks

被引:26
|
作者
Ferrari, S [1 ]
Vaghi, A
机构
[1] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA
[2] Politecn Milan, I-20030 Senago, MI, Italy
基金
美国国家科学基金会;
关键词
Bayesian networks (BNs); classification; fusion; landmine detection; sensor modeling;
D O I
10.1109/JSEN.2006.870162
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A method for obtaining the Bayesian network (BN) representation of a sensor's measurement process is developed so that the problems of sensor fusion and management can be approached from a unified point of view. Uncertainty, reliability, and causal information embedded in the sensor data are used to build the BN model of a sensor. The method is applied to model ground-penetrating radar, electromagnetic induction, and infrared sensors for humanitarian demining. Structural and parameter learning algorithms are employed to encode relationships among mine features, sensor measurements, and environmental conditions in the BN model. Inference is used to estimate target features in the presence of heterogeneous soil and varying environmental conditions. A multisensor fusion technique operating on BN models is developed to exploit the complementarity of the sensor measurements. Through the same approach, a BN classifier is obtained to estimate the target typology. The BN models and classifier also compute so-called confidence levels that quantify the uncertainty associated with the feature estimates and the classification decisions. The effectiveness of the approach is demonstrated by implementing these BN tools for the detection and classification of metal and plastic landmines that are characterized by different shape, size, depth, and metal content. Through BN fusion, the accuracy of the feature estimates is improved by up to 64% with respect to single-sensor measurements, and the number of objects that are both detected and classified is increased by up to 62%.
引用
收藏
页码:471 / 483
页数:13
相关论文
共 50 条
  • [31] Feature-level Fusion for Depression Recognition Based on fNIRS Data
    Zheng, Shuzhen
    Lei, Chang
    Wang, Tao
    Wu, Chunyun
    Sun, Jieqiong
    Peng, Hong
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 2906 - 2913
  • [32] Wood species identification using feature-level fusion scheme
    Zhao, Peng
    Dou, Gang
    Chen, Guang-Sheng
    OPTIK, 2014, 125 (03): : 1144 - 1148
  • [33] Crowd counting by feature-level fusion of appearance and fluid force
    Ma, Dingxin
    Zhang, Xuguang
    Yu, Hui
    2020 11TH INTERNATIONAL CONFERENCE ON AWARENESS SCIENCE AND TECHNOLOGY (ICAST), 2020,
  • [34] Feature level sensor fusion
    Peli, T
    Young, M
    Knox, R
    Ellis, K
    Bennett, F
    SENSOR FUSION: ARCHITECTURES, ALGORITHMS, AND APPLICATIONS III, 1999, 3719 : 332 - 339
  • [35] Feature-level and Model-level Audiovisual Fusion for Emotion Recognition in the Wild
    Cai, Jie
    Meng, Zibo
    Khan, Ahmed Shehab
    Li, Zhiyuan
    O'Reilly, James
    Han, Shizhong
    Liu, Ping
    Chen, Min
    Tong, Yan
    2019 2ND IEEE CONFERENCE ON MULTIMEDIA INFORMATION PROCESSING AND RETRIEVAL (MIPR 2019), 2019, : 443 - 448
  • [36] Dynamic human fatigue detection using feature-level fusion
    Fan, Xiao
    Yin, Bao-Cai
    Sun, Yan-Feng
    IMAGE AND SIGNAL PROCESSING, 2008, 5099 : 94 - 102
  • [37] Analysis of Multi-biometric Encryption at Feature-level Fusion
    Fu, Bo
    Lin, Jie
    Duan, Guiduo
    PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 4569 - 4573
  • [38] An Investigation of a Feature-Level Fusion for Noisy Speech Emotion Recognition
    Sekkate, Sara
    Khalil, Mohammed
    Adib, Abdellah
    Ben Jebara, Sofia
    COMPUTERS, 2019, 8 (04)
  • [39] A fault diagnosis method based on feature-level fusion of multi-sensor information for rotating machinery
    Gao, Tianyu
    Yang, Jingli
    Zhang, Baoqin
    Li, Yunlu
    Zhang, Huiyuan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (03)
  • [40] Speech emotion classification using feature-level and classifier-level fusion
    Mishra, Siba Prasad
    Warule, Pankaj
    Deb, Suman
    EVOLVING SYSTEMS, 2024, 15 (02) : 541 - 554