A New Generalization of Some Curve Pairs

被引:0
|
作者
Celik, Oguzhan [1 ]
Ozdemir, Mustafa [2 ]
机构
[1] Pamukkale Univ, Bankacilik & Sigortacilik, Denizli, Turkey
[2] Akdeniz Univ, Dept Math, TR-07070 Antalya, Turkey
来源
关键词
Bertrand mate; Backlund transformation; constant torsion curves; curve mates; MANNHEIM PARTNER CURVES; BERTRAND CURVES; BACKLUND-TRANSFORMATIONS;
D O I
10.36890/IEJG.1110327
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we give a new curve pair that generalizes some of the famous pairs of curves as Bertrand and constant torsion curves. This curve pair is defined with the help of a vector obtained by the intersection of the osculating planes such that this vector makes the same angle gamma with the tangents of the curves. We examine the relations between torsions and curvatures of these curve mates. Also, We have seen that the unit quaternion corresponding to the rotation matrix between the Frenet vectors of the curves is q = cos(0/2) - i sin(0/2) cos gamma - j sin(0/2) sin gamma, where 0 is the angle between the reciprocal binormals of the curves. Finally, we show in which specific case which well-known pairs of curves will be obtained.
引用
收藏
页码:214 / 224
页数:11
相关论文
共 50 条
  • [1] Some curve pairs according to types of Bishop frame
    YILMAZ, Beyhan
    AIMS MATHEMATICS, 2021, 6 (05): : 4463 - 4473
  • [2] Classifying simple closed curve pairs in the 2-sphere and a generalization of the Schoenflies theorem
    Franzosa, Robert D.
    Gotchev, Ivan S.
    Look, Daniel M.
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (06) : 748 - 760
  • [3] Some new Steffensen pairs
    Feng Qi
    Jun-Xiang Cheng
    Analysis Mathematica, 2003, 29 (3) : 219 - 226
  • [4] GENERALIZATION OF GUELFAND PAIRS
    BAKALI, A
    AKKOUCHI, M
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1992, 6B (04): : 795 - 822
  • [5] Some new periodic Golay pairs
    Dragomir Ž. Ðoković
    Ilias S. Kotsireas
    Numerical Algorithms, 2015, 69 : 523 - 530
  • [6] Some new periodic Golay pairs
    Dokovic, Dragomir Z.
    Kotsireas, Ilias S.
    NUMERICAL ALGORITHMS, 2015, 69 (03) : 523 - 530
  • [7] Analytical curve pairs
    Lauffer, R
    MATHEMATISCHE ANNALEN, 1925, 93 : 230 - 243
  • [8] Characterizations of Bertrand curve pairs via new Frenet formulas
    Senyurt, Suleyman
    Cakir, Osman
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2023, 41 (06): : 1115 - 1120
  • [9] ON THE GENERALIZATION OF MODEL OF LOCAL PAIRS
    PASTUR, LA
    SLUSAREV, VA
    FIZIKA NIZKIKH TEMPERATUR, 1987, 13 (10): : 1092 - 1094
  • [10] Some new transformations for Bailey pairs and WP-Bailey pairs
    Mc Laughlin, James
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2010, 8 (03): : 474 - 487