Characterizations of Bertrand curve pairs via new Frenet formulas

被引:0
|
作者
Senyurt, Suleyman [1 ]
Cakir, Osman [1 ]
机构
[1] Ordu Univ, Fac Arts & Sci, Dept Math, TR-52200 Ordu, Turkiye
关键词
Bertrand Partner Curve; Levi-Civita Connection; Mean Curvature Vector; Biharmonic Curve; Laplace Operator;
D O I
10.14744/sigma.2023.00136
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, we first introduce new Frenet formulas by making use of the properties of connected curves. Then applying these formulas we show that some decisive properties of Bertrand partner curve can be given in terms of a Bertrand curve. More precisely, we offer differential equations of the Bertrand partner curve with respect to both Levi-Civita and normal Levi-Civita connections in terms of the Bertrand curve. We also give harmonicity conditions of the partner curve of Bertrand curve pair by the same method. We obtain some new results and finally we give an example to support our allegations.
引用
收藏
页码:1115 / 1120
页数:6
相关论文
共 50 条
  • [1] ON CHARACTERIZATIONS OF SPHERICAL CURVES USING FRENET LIKE CURVE FRAME
    Eren, Kemal
    Ayvaci, Kebire Hilal
    Senyurt, Suleyman
    HONAM MATHEMATICAL JOURNAL, 2022, 44 (03): : 391 - 401
  • [2] New geometric magnetic energy according to geometric Frenet formulas
    Alper Ekinci
    Selçuk Bas
    Talat Körpinar
    Zeliha Körpinar
    Optical and Quantum Electronics, 2024, 56
  • [3] New geometric magnetic energy according to geometric Frenet formulas
    Ekinci, Alper
    Bas, Selcuk
    Korpinar, Talat
    Korpinar, Zeliha
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (01)
  • [4] A MECHANIZATION METHOD OF GEOMETRY AND ITS APPLICATIONS——Ⅱ. CURVE PAIRS OF BERTRAND TYPE
    吴文俊
    ScienceBulletin, 1987, (09) : 585 - 588
  • [5] A MECHANIZATION METHOD OF GEOMETRY AND ITS APPLICATIONS .22. CURVE PAIRS OF BERTRAND TYPE
    WU, WJ
    KEXUE TONGBAO, 1987, 32 (09): : 585 - 588
  • [6] New representations of Bertrand pairs in Euclidean 3-space
    Tuncer, Yilmaz
    Unal, Serpil
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) : 1833 - 1842
  • [7] A New Generalization of Some Curve Pairs
    Celik, Oguzhan
    Ozdemir, Mustafa
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2022, 15 (02): : 214 - 224
  • [8] Curve counting via stable pairs in the derived category
    Pandharipande, R.
    Thomas, R. P.
    INVENTIONES MATHEMATICAE, 2009, 178 (02) : 407 - 447
  • [9] Curve counting via stable pairs in the derived category
    R. Pandharipande
    R. P. Thomas
    Inventiones mathematicae, 2009, 178 : 407 - 447
  • [10] New-Keynesian Phillips curve with Bertrand competition and endogenous entry
    Etro, Federico
    Rossi, Lorenza
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2015, 51 : 318 - 340