PARABOLIC EQUATIONS RELATIVE TO VECTOR FIELDS

被引:0
|
作者
Bieske, Thomas [1 ]
机构
[1] Univ S Florida, Dept Math, Tampa, FL 33620 USA
关键词
Viscosity solutions; vector fields; parabolic equations;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define two notions of viscosity solutions to parabolic equations defined using vector fields, depending on whether the test functions concern only the past or both the past and the future. Using the parabolic maximum principle for vector fields, we then prove a comparison principle for a class of parabolic equations and show the sufficiency of considering the test functions that concern only the past.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Nonlocal Problem with Impulsive Action for Parabolic Equations of the Vector Order
    G. M. Unguryan
    Ukrainian Mathematical Journal, 2022, 73 : 1772 - 1782
  • [32] A characterisation of Manhart's relative normal vector fields
    Verpoort, Steven
    ADVANCES IN GEOMETRY, 2012, 12 (01) : 29 - 42
  • [33] Nonlinear Stability of Relative Equilibria and Isomorphic Vector Fields
    Klajbor-Goderich, Stefan
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
  • [34] ON THE RELATIVE ROTATION OF MULTIVALUED POTENTIAL VECTOR-FIELDS
    KLIMOV, VS
    SENCHAKOVA, NV
    MATHEMATICS OF THE USSR-SBORNIK, 1993, 74 (01): : 131 - 144
  • [35] Non-divergence form parabolic equations associated with non-commuting vector fields: boundary behavior of nonnegative solutions
    Frentz, Marie
    Garofalo, Nicola
    Gotmark, Elin
    Munive, Isidro
    Nystrom, Kaj
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2012, 11 (02) : 437 - 474
  • [36] On solving relative norm equations in algebraic number fields
    Fieker, C
    Jurk, A
    Pohst, M
    MATHEMATICS OF COMPUTATION, 1997, 66 (217) : 399 - 410
  • [37] Parabolic-symmetry vector optical fields and their tightly focusing properties
    Pan, Yue
    Li, Yongnan
    Ren, Zhi-Cheng
    Si, Yu
    Tu, Chenghou
    Wang, Hui-Tian
    PHYSICAL REVIEW A, 2014, 89 (03):
  • [38] G-convergence of elliptic and parabolic operators depending on vector fields*
    Maione, A.
    Paronetto, F.
    Vecchi, E.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29
  • [39] Killing Vector Fields, Maxwell Equations and Lorentzian Spacetimes
    Rodrigues, Waldyr A., Jr.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2010, 20 (3-4) : 871 - 884
  • [40] Systems of Vector Fields for the Integration of Ordinary Differential Equations
    Ruiz, A.
    Muriel, C.
    RECENT ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL THEORY, 2021, 9 : 83 - 102